http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 573 1
OK
background image not found
Found Update results for
'ventricular failure'
9
Indications for Hemodynamic Monitoring in Patients with STEMI Management of complicated acute myocardial infarction Hypovolemia versus cardiogenic shock Ventricular septal rupture versus acute mitral regurgitation Severe left ventricular failure Right ventricular failure Refractory ventricular tachycadia Differentiating severe pulmonary disease from left ventricular failure Assessment of cardiac tamponade Assessment of therapy in selected individuals Afterload reduction in patients with severe left ventricular failure Inotropic agent therapy Beta-blocker therapy Temporary pacing (ventricular versus atrioventricular) Intraaortic balloon counterpulsation Mechanical ventilation
The use of invasive hemodynamic monitoring is based on the following principal factors: 1. Difficulty in interpreting clinical and radiographic findings of pulmonary congestion even after a thorough review of noninvasive studies such as an echo-cardiogram. 2. Need for identifying noncardiac causes of arterial hypotension, particularly hypovolemia. 3. Possible contribution of reduced ventricular compliance to impaired hemodynamics, requiring judicious adjustment of intravascular volume to optimize left ventricular filling pressure. 4. Difficulty in assessing the severity and sometimes even determining the presence of lesions such as mitral regurgitation and ventricular septal defect when the cardiac output or the systemic pressures are depressed. 5. Establishing a baseline of hemodynamic measurements and guiding therapy in patients with clinically apparent pulmonary edema or cardiogenic shock. 6. Underestimation of systemic arterial pressure by the cuff method in patients with intense vasoconstriction. The prognosis and the clinical status of patients with STEMI relate to both the cardiac output and the pulmonary artery wedge pressure. Patients
It may also improve arterial oxygenation by reducing pulmonary vascular congestion DIURETICS. Mild heart failure responds well to diuretics such as furosemide, Dose - 10 to 40 mg, repeated at 3- to 4-hour intervals if necessary. It reduces pulmonary capillary pressure reduces dyspnea. Decreased LVDV↓ LV wall tension - ↓ myocardial oxygen requirements and may lead to improvement of contractility and augmentation of the ejection fraction, stroke volume, and cardiac output. The reduction of elevated left ventricular filling pressure may also enhance myocardial oxygen delivery by diminishing the impedance to coronary perfusion attributable to elevated ventricular wall tension. .
Left Ventricular Failure Single most important predictor of mortality following STEMI in patients with STEMI Systolic dysfunction alone or both systolic and diastolic dysfunction can occur. LVDD leads to pulmonary venous hypertension and pulmonary congestion. Systolic dysfunction - ↓ cardiac output and of the ejection fraction. Predictors of LVF infarct size, advanced age and diabetes.[190] Mortality increases in association with the severity of the hemodynamic deficit.
This ordinarily consists of monitoring of  is suspected. heart rate and rhythm,  repeated measurement of systemic arterial pressure by cuff,  obtaining chest radiographs to detect heart failure,  repeated auscultation of the lung fields for pulmonary congestion,  measurement of urine flow,  examination of the skin and mucous membranes for evidence of the adequacy of perfusion, and
THE HYPERDYNAMIC STATE. MI with hyperdynamic state—that is, elevation of sinus rate, arterial pressure, and cardiac index, occurring singly or together in the presence of a normal or low left ventricular filling pressure—and if other causes of tachycardia such as fever, infection, and pericarditis can be excluded, treatment with beta blockers is indicated. Presumably, the increased heart rate and blood pressure are the result of inappropriate activation of the sympathetic nervous system, possibly secondary to augmented release of catecholamines, pain and anxiety, or some combination of these.
Important coronary risk factors 1 Existing vascular disease (coronary, cerebral or peripheral) 2 Age 3 Dyslipidaemia 4 Smoking 5 Family history 6 Hypertension 7 Male sex/hormonal factors 8 Diabetes 9 Renal impairment 10 Obesity 11 Inactivity 12 Thrombogenic factors 13 Other dietary factors 14 Homocystinaemia 15 Psychological factors 16 Elevated hsCRP 17 Abnormal CT calcium score/coronary angiogram 18 Left ventricular hypertrophy (hypertensive patients) 19 Abnormal
CARDIOLOGIST IN YELAHANKA SECOND DEGREE AV BLICK There are two basic types of second-degree AV block: AV nodal Möbitz type I (Wenckebach) heart block, and the more distal and more sinister Möbitz type II heart block. Möbitz type I heart block is much more common. In Möbitz type I block the PR interval lengthens progressively with each cardiac cycle, until an atrial wave is not conducted. There is recovery of conduction and the next a wave is conducted with a shorter interval and the cycle begins again. The QRS complex is narrow (Fig 3.10) (unless associated with pre-existing BBB). The increment is largest between the first and second conducted P wave, and the PR interval continues to increase by less and less until a P wave is dropped. Möbitz type II heart block is almost always associated with a BBB (Fig 3.11), since its origin is intraventricular (below the AV node), and it tends to lapse suddenly into extreme bradycardia or asystole. It tends to be over-diagnosed, especially in the setting of 2:1 AV block (Fig 3.12). There is no lengthening of the PR interval before an atrial wave is not conducted. At times, atropine or exercise can demonstrate the site of the block, by increasing the block from 2:1 to a higher grade when the underlying mechanism is Möbitz II. Conversely, Wenckebach conduction may improve to 3:2 or better. For a distinction to be made between Möbitz type I and Möbitz type II, at least two consecutively conducted P waves have to be evaluated. This is impossible in 2:1 conduction (block) and can only be reported as 2:1 AV block (Fig 3.12). Yet this is very commonly reported as
PAPULAR CARDIOLOGISTS IN HEBBALA ECG interpretation: points to remember 1 ECG reports should be short and based on clinical information where possible. 2 Check that the patient’s name is on the ECG and that the paper speed and calibration markers are correct. 3 Measure or estimate the heart rate—3 large squares = 100/minute. 4 Establish the rhythm. Look for P waves (best seen in L2). Are the P waves followed by QRS complexes? Look for anomalously conducted or ectopic beats. 5 Measure the intervals: PR, QRS duration and QT interval (for the latter, consult tables, but normal is less than 50% of the RR interval). 6 If the QRS complex is wide (> 3 small squares) consider the possibilities: LBBB, RBBB, WPW or ventricular rhythm or beats. If the pattern is of LBBB, there is no need in most cases to attempt further interpretation. 7 Estimate the QRS axis. In LAD, L1 and aVF diverge and L2 is predominantly negative. In RAD, L1 and aVF converge, while L2 matters little. Indeterminate axis is diagnosed when all six frontal leads are (more or less) equiphasic. 8 Check whether the criteria for LAHB or LAFB have been met. 9 Look for pathological Q waves. In general these are longer than 0.04 seconds and are more than 25% of the size of the following R wave.
1
false