http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 575 1
OK
background image not found
Found Update results for
'tp segment'
9
CARDIOLOGY DOCTORS IN HOSUR ROAD Pulmonary embolism This is not quite a cardiac condition and not quite a respiratory condition but it is often managed by cardiologists. Modern CT pulmonary angiography is very sensitive and specific for the diagnosis of PE. A negative scan that is of good quality effectively excludes the diagnosis. The scans are so sensitive that small distal emboli may be detected in patients who do not have convincing symptoms of embolism. This poses a therapeutic problem that may be avoided if scans are not ordered inappropriately. Some patients cannot have a CTPA, usually because of renal impairment that would make the injection of contrast risky. A V/Q nuclear scan is then a reasonable alternative to a CTPA. These scans are less accurate than CT pulmonary angiography but the clinical suspicion of PE and a lung scan reported as intermediate or high probability is an indication for treatment. Patients should be admitted to hospital and treatment begun with intravenous heparin or subcutaneous low molecular weight heparin. The latter has the advantage that the dose is determined by body weight and repeated measurements of clotting times are not required. In some cases it may be possible to treat patients with small pulmonary emboli at home with supervised low molecular weight heparin. Either way, soon after diagnosis patients should be started on oral anticoagulation treatment with warfarin. A stable INR may often be achieved within five days or so, the heparin ceased and the patient discharged. Most patients with dyspnoea as a result of PE begin to feel better within a few days of starting treatment. It is often difficult to know how long to continue treatment with warfarin. The usual recommendation for an uncomplicated first PE is three to six months. Recurrent PE may be an indication for lifelong treatment. It also suggests a need to investigate for clotting abnormalities (e.g. anti-thrombin III deficiency, protein S and protein C deficiency, abnormal Factor V and anti-nuclear antibody). A very large and life-threatening PE which is associated with the sudden onset of severe dyspnoea and hypotension may be an indication for thrombolytic treatment. An echocardiogram may show abnormal right ventricular function in these ill patients and help in the decision. Experience with this is limited and the optimum regimen is not really known. Tissue plasminogen activator (TPA) is now indicated for this purpose and current recommendations are for a 10 mg bolus over two minutes followed by 90 mg over two hours.
The use of invasive hemodynamic monitoring is based on the following principal factors: 1. Difficulty in interpreting clinical and radiographic findings of pulmonary congestion even after a thorough review of noninvasive studies such as an echo-cardiogram. 2. Need for identifying noncardiac causes of arterial hypotension, particularly hypovolemia. 3. Possible contribution of reduced ventricular compliance to impaired hemodynamics, requiring judicious adjustment of intravascular volume to optimize left ventricular filling pressure. 4. Difficulty in assessing the severity and sometimes even determining the presence of lesions such as mitral regurgitation and ventricular septal defect when the cardiac output or the systemic pressures are depressed. 5. Establishing a baseline of hemodynamic measurements and guiding therapy in patients with clinically apparent pulmonary edema or cardiogenic shock. 6. Underestimation of systemic arterial pressure by the cuff method in patients with intense vasoconstriction. The prognosis and the clinical status of patients with STEMI relate to both the cardiac output and the pulmonary artery wedge pressure. Patients
The causes of coronary symptoms The symptoms of coronary artery disease are caused by the reduction of myocardial perfusion that results from narrowing of the lumen of one or more of the coronary arteries. This narrowing is most often the result of atherosclerosis. Other much less common causes include: 1 coronary artery spasm (p. 146) (often in an already diseased segment of artery but sometimes as a result of the use of cocaine) 2 thrombosis (usually on an already diseased, or occasionally aneurismal, segment) 3 embolism (e.g. from an infected aortic valve) 4 congenital coronary abnormality
The causes of coronary symptoms The symptoms of coronary artery disease are caused by the reduction of myocardial perfusion that results from narrowing of the lumen of one or more of the coronary arteries. This narrowing is most often the result of atherosclerosis. Other much less common causes include: 1 coronary artery spasm (p. 146) (often in an already diseased segment of artery but sometimes as a result of the use of cocaine) 2 thrombosis (usually on an already diseased, or occasionally aneurismal, segment) 3 embolism (e.g. from an infected aortic valve) 4 congenital coronary abnormality HEART SPECIALIST IN YELAHANKA
CARDIOLOGIST IN SAHAKARANAGAR The causes of coronary symptoms The symptoms of coronary artery disease are caused by the reduction of myocardial perfusion that results from narrowing of the lumen of one or more of the coronary arteries. This narrowing is most often the result of atherosclerosis. Other much less common causes include: 1 coronary artery spasm (p. 146) (often in an already diseased segment of artery but sometimes as a result of the use of cocaine) 2 thrombosis (usually on an already diseased, or occasionally aneurismal, segment) 3 embolism (e.g. from an infected aortic valve) 4 congenital coronary abnormality 5 vasculitis.
It may also improve arterial oxygenation by reducing pulmonary vascular congestion DIURETICS. Mild heart failure responds well to diuretics such as furosemide, Dose - 10 to 40 mg, repeated at 3- to 4-hour intervals if necessary. It reduces pulmonary capillary pressure reduces dyspnea. Decreased LVDV↓ LV wall tension - ↓ myocardial oxygen requirements and may lead to improvement of contractility and augmentation of the ejection fraction, stroke volume, and cardiac output. The reduction of elevated left ventricular filling pressure may also enhance myocardial oxygen delivery by diminishing the impedance to coronary perfusion attributable to elevated ventricular wall tension. .
Left Ventricular Failure Single most important predictor of mortality following STEMI in patients with STEMI Systolic dysfunction alone or both systolic and diastolic dysfunction can occur. LVDD leads to pulmonary venous hypertension and pulmonary congestion. Systolic dysfunction - ↓ cardiac output and of the ejection fraction. Predictors of LVF infarct size, advanced age and diabetes.[190] Mortality increases in association with the severity of the hemodynamic deficit.
THE BEST CARDIOLOGISTS IN YELAHANKA A systematic description of ECGs The following eight short steps will enable most ECGs to be described correctly: 1 Check the paper speed and calibration markers. 2 Measure or estimate the heart rate. 3 Estimate the rhythm. 4 Look for P waves. 5 Measure the PR interval. 6 Examine the QRS complex. 7 Check the ST segment. 8 Measure the T wave. ECG interpretation should always be as restrained as practicable, taking into account the clinical context where known and comparison with previous tracings where possible. The possibility of Prinzmetal’s electrocardiographic heart disease must always be borne in mind—that is, do not assume that an abnormal ECG always means heart disease.2.
ECHOCARDIOLOGIST IN GANGAMMA CIRCLE Mitral regurgitation A regurgitant mitral valve allows part of the left ventricular stroke volume to regurgitate into the left atrium, imposing a volume load on both the left atrium and the left ventricle. Symptoms: Dyspnoea (increased left atrial pressure); fatigue (decreased cardiac output). General signs: Tachypnoea. The pulse: Normal, or sharp upstroke due to rapid left ventricular decompression; atrial fibrillation is relatively common. Palpation: The apex beat may be displaced, diffuse and hyperdynamic if left ventricular enlargement has occurred; a pansystolic thrill may be present at the apex; a parasternal impulse (due to left atrial enlargement behind the right ventricle—the left atrium is often larger in mitral regurgitation than in mitral stenosis and can be enormous). All these signs suggest severe mitral regurgitation. Auscultation Soft or absent S1 (by the end of diastole, atrial and ventricular pressures have equalised and the valve cusps have drifted back together); left ventricular S3, due to rapid left ventricular filling in early diastole; pansystolic murmur maximal at the apex and usually radiating towards the axilla. Causes of chronic mitral regurgitation: (i) Degenerative; (ii) rheumatic; (iii) mitral valve prolapse; (iv) papillary muscle dysfunction, due to left ventricular failure or ischaemia.
1
false