http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 575 1
OK
background image not found
Found Update results for
'respiratory problem idiopathic'
9
THE BEST CARDIOLOGISTS IN YELAHANKA Pulmonary hypertension Pulmonary hypertension is an uncommon but important cause of dyspnoea. Many patients with this chronic and often severe illness will have raised pulmonary artery pressures as a result of a cardiac or respiratory illness. Other patients may present with increasing dyspnoea without an obvious cardiac or respiratory problem. Idiopathic (primary) pulmonary hypertension (IPH) is diagnosed only when other causes of pulmonary hypertension have been excluded. By definition, pulmonary hypertension is present when the mean pulmonary artery pressure (PAP) exceeds 25 mmHg at rest or 30 mmHg during exercise. The classification of pulmonary hypertension has been revised. The Venice classification was released in 2003. The term ‘primary pulmonary hypertension’ has been replaced with ‘idiopathic pulmonary hypertension’ Patients may have used fenfluramine or phenermine (appetite-suppressing drugs), or both. Use of these drugs for long periods has been associated with the greatest risk of developing pulmonary hypertension. In cases of IPH there may be a family history (6%; autosomal dominant condition with incomplete penetrance, 20–80%). The majority of familial cases are associates with a mutation on the BMPR2 gene. There may be associated symptoms including fatigue, chest pain, syncope and oedema. Cough and haemoptysis can be present. 270 PRACTICAL CARDIOLOGY The examination may help in assessing the severity of the patient’s dyspnoea as he or she undresses. Try to work out the patient’s functional class from the history and examination (p. 256) (NYHA I–IIII, often called the NYHA–WHO class when related to pulmonary hypertension). There may be signs of chronic lung disease or congenital heart disease, or specific signs of pulmonary hypertension and right heart failure (p. 257). Investigations are directed at finding an underlying reason for pulmonary hypertension— idiopathic pulmonary hypertension is a diagnosis of exclusion—and at assessing its severity and potential reversibility. The chest X-ray is abnormal in 90% of IPH patients. It may show pulmonary fibrosis or an abnormal cardiac silhouette—RV dilatation. There may be large proximal pulmonary arteries that appear ‘pruned’ in the periphery, and the heart may appear enlarged because of right ventricle dilatation) Respiratory function tests may show a normal, restrictive or obstructive pattern. Moderate pulmonary hypertension itself is associated with a reduction in the diffusing capacity for the carbon monoxide test (DLCO) to about 50% of predicted. On the ECG look for signs of right heart strain or hypertrophy, which are present in up to 90% of patients The blood gas measurements may show hypercapnia—elevated pCO2 in hypoventilation syndromes—but hypocapnia is more common in IPH because of increased alveolar ventilation. Mild hypoxia (reduction in pO2) may be present in IPH, and is more severe when pulmonary hypertension is secondary to lung disease. On CT pulmonary angiogram (CTPA), ventilation/perfusion (V/Q) lung scan or Doppler venograms look for a deep venous thrombosis (DVT) and PE and assess the extent of involvement of the pulmonary bed. A high-resolution CT scan of the lungs is the best way of looking for interstitial lung disease. The six-minute walking test predicts survival and correlates with the NYHA–WHO class. Reduction in arterial oxygen concentration of more than 10% during this test predicts an almost threefold mortality risk over 29 months. Patients unable to manage 332 m in six minutes also have an adverse prognosis.
HEART DOCTORS IN CHIKKAJALA, BANGALORE; Pulmonary hypertension Pulmonary hypertension is an uncommon but important cause of dyspnoea. Many patients with this chronic and often severe illness will have raised pulmonary artery pressures as a result of a cardiac or respiratory illness. Other patients may present with increasing dyspnoea without an obvious cardiac or respiratory problem. Idiopathic (primary) pulmonary hypertension (IPH) is diagnosed only when other causes of pulmonary hypertension have been excluded. By definition, pulmonary hypertension is present when the mean pulmonary artery pressure (PAP) exceeds 25 mmHg at rest or 30 mmHg during exercise. The classification of pulmonary hypertension has been revised. The Venice classification was released in 2003. The term ‘primary pulmonary hypertension’ has been replaced with ‘idiopathic pulmonary hypertension’ . Patients may have used fenfluramine or phenermine (appetite-suppressing drugs), or both. Use of these drugs for long periods has been associated with the greatest risk of developing pulmonary hypertension. In cases of IPH there may be a family history (6%; autosomal dominant condition with incomplete penetrance, 20–80%). The majority of familial cases are associates with a mutation on the BMPR2 gene. There may be associated symptoms including fatigue, chest pain, syncope and oedema. Cough and haemoptysis can be present.
CARDIOLOGY DOCTORS IN HOSUR ROAD Pulmonary embolism This is not quite a cardiac condition and not quite a respiratory condition but it is often managed by cardiologists. Modern CT pulmonary angiography is very sensitive and specific for the diagnosis of PE. A negative scan that is of good quality effectively excludes the diagnosis. The scans are so sensitive that small distal emboli may be detected in patients who do not have convincing symptoms of embolism. This poses a therapeutic problem that may be avoided if scans are not ordered inappropriately. Some patients cannot have a CTPA, usually because of renal impairment that would make the injection of contrast risky. A V/Q nuclear scan is then a reasonable alternative to a CTPA. These scans are less accurate than CT pulmonary angiography but the clinical suspicion of PE and a lung scan reported as intermediate or high probability is an indication for treatment. Patients should be admitted to hospital and treatment begun with intravenous heparin or subcutaneous low molecular weight heparin. The latter has the advantage that the dose is determined by body weight and repeated measurements of clotting times are not required. In some cases it may be possible to treat patients with small pulmonary emboli at home with supervised low molecular weight heparin. Either way, soon after diagnosis patients should be started on oral anticoagulation treatment with warfarin. A stable INR may often be achieved within five days or so, the heparin ceased and the patient discharged. Most patients with dyspnoea as a result of PE begin to feel better within a few days of starting treatment. It is often difficult to know how long to continue treatment with warfarin. The usual recommendation for an uncomplicated first PE is three to six months. Recurrent PE may be an indication for lifelong treatment. It also suggests a need to investigate for clotting abnormalities (e.g. anti-thrombin III deficiency, protein S and protein C deficiency, abnormal Factor V and anti-nuclear antibody). A very large and life-threatening PE which is associated with the sudden onset of severe dyspnoea and hypotension may be an indication for thrombolytic treatment. An echocardiogram may show abnormal right ventricular function in these ill patients and help in the decision. Experience with this is limited and the optimum regimen is not really known. Tissue plasminogen activator (TPA) is now indicated for this purpose and current recommendations are for a 10 mg bolus over two minutes followed by 90 mg over two hours.
POPULAR CARDIOLOGIST IN KATTIGENAHALLI, BANGALORE Cyanotic congenital heart disease Some of the more common cyanotic lesions are discussed below. There are, however, a number of problems common to patients with cyanotic heart disease. 1 Erythrocytosis. Chronic cyanosis causes an increase in red cell numbers as a way of increasing oxygen carrying capacity. The platelet count is sometimes reduced and the white cell count normal. The increased blood viscosity associated with the high red cell mass causes a slight increase in the risk of stroke.37 Most patients have a stable elevated haemoglobin level, but venesection is recommended if this is greater than 20 g/dL and the haematocrit is greater than 65%. Levels as high as this can be associated with the hyperviscosity syndrome: headache, fatigue and difficulty concentrating. Recurrent venesection can cause iron depletion and the production of microcytic red cells, which are stiffer than normal cells and so increase viscosity further. 2 Bleeding. Reduced platelet numbers, abnormal platelet function and clotting factor deficiencies mean these patients have an increased risk of haemorrhage. The most dangerous problem is pulmonary haemorrhage but bleeding from the gums and menorrhagia are more common. The use of anticoagulation must be restricted to those with a strong indication for treatment. 3 Gallstones. Chronic cyanosis and increased haem turnover are associated with an increased incidence of pigment gallstones. 4 Renal dysfunction and gout. Congestion of the renal glomeruli is associated with a reduced glomerular filtration rate and proteinuria. This and the increased turnover of red cells lead to urate accumulation and gout. 5 Pulmonary hypertension. Lesions associated with increased flow through the pulmonary circulation (e.g. a large atrial septal defect) can lead to a reactive rise in pulmonary arterial resistance. This is more likely to occur if the left to right shunt is large. Eventually these pulmonary vascular changes become irreversible, pulmonary pressures equal or exceed systemic pressures, and central cyanosis occurs because the intra-cardiac shunt reverses (Eisenmenger’s syndrome). Flow is now from right to left. There is then no benefit in attempting to correct the underlying cardiac abnormality. Earlier and more successful treatment of children with congenital heart disease has reduced the number of patients with this inexorable disease. Careful management of these conditions can nevertheless improve patients’ symptoms and survival. Reasonable exercise tolerance is usually maintained into adult life for most patients but progressive deterioration then occurs. Haemorrhagic complications, especially haemoptysis, are common. Thrombotic stroke, cerebral abscess and pulmonary infarction can also occur.
Heart and diabetic center in yelahanka. this centre was basically established to cater to all the patients with heart and diabetic problems under one roof
HEART SPEACIALISTS IN BANGALORE Stress echocardiography Ischaemic areas of myocardium are known to have reduced contraction compared with normal areas. This can be demonstrated by high-quality echocardiograms. A number of standard views of the heart are obtained and the wall is divided into regions that are assessed for reduced motion. The echo equipment must be designed to store rest images and to present them next to stress images on a split screen so that direct comparison can be made. The stress can be provided by exercise or dobutamine infusion. Exercise echocardiography is difficult to perform because of movement problems and there is quite high inter-reporter variability, but both techniques can approach the accuracy of sestamibi testing in experienced hands. It is not possible to obtain images of adequate quality in all patients.
THE BEST CARDIOLOGISTS IN YELAHANKA Indications for coronary angiography 1 Angina not responding to medical treatment in a patient without contraindications (e.g. extreme old age—usually older than about 85 these days—or severe co-morbidities) to cardiac surgery or angioplasty. 2 Continuing chest pain whose cause is not clear despite non-invasive investigations. The procedure may well be worthwhile if it reveals normal coronary arteries and prevents a patient being treated unnecessarily with more and more anti-anginal drugs. Non-invasive investigations are more often equivocal in women, and more women than men are found to have normal coronaries at angiography. 3 Preparation of a patient older than 35 or so for some other cardiac surgery (e.g. valve replacement). The surgeon needs to know whether significant coronary disease is present so that coronary grafting can be performed at the time of valve surgery. Otherwise, patients are at risk of ischaemic problems in the post-operative period. 4 Diagnosis of cardiomyopathy (p. 267) by excluding coronary artery disease and infarction as the cause of angina or cardiac failure. These patients may benefit from revascularisation if significant coronary disease is also present (‘ischaemic cardiomyopathy’). 5 Investigation of patients following myocardial infarction. Routine transfer to a centre with angiographic facilities after successful thrombolytic treatment is a grade D recommendation. There is no proof that a patient without continuing ischaemia has an improved prognosis when angiography and revascularisation are carried out routinely after infarction. The Open Artery Trial results suggest there is no benefit compared with optimal medical treatment for patients without ischaemic symptoms in having an occluded vessel opened five days or more after an infarction. However, spontaneous or induced ischaemia (by modified stress testing or perfusion imaging) leads to a grade B recommendation for angiography and intervention. The management of post-infarct patients is definitely easier if the coronary anatomy is known, and many units adopt the policy of early (within a week) angiography of infarct patients without contraindications to revascularisation. 6 Non-ST elevation acute coronary syndromes (p. 156). 7 Acute myocardial infarction in a unit where primary angioplasty can be performed
IHEART SPECIALISTS IN HEBBALA ndications for coronary angiography 1 Angina not responding to medical treatment in a patient without contraindications (e.g. extreme old age—usually older than about 85 these days—or severe co-morbidities) to cardiac surgery or angioplasty. 2 Continuing chest pain whose cause is not clear despite non-invasive investigations. The procedure may well be worthwhile if it reveals normal coronary arteries and prevents a patient being treated unnecessarily with more and more anti-anginal drugs. Non-invasive investigations are more often equivocal in women, and more women than men are found to have normal coronaries at angiography. 3 Preparation of a patient older than 35 or so for some other cardiac surgery (e.g. valve replacement). The surgeon needs to know whether significant coronary disease is present so that coronary grafting can be performed at the time of valve surgery. Otherwise, patients are at risk of ischaemic problems in the post-operative period. 4 Diagnosis of cardiomyopathy (p. 267) by excluding coronary artery disease and infarction as the cause of angina or cardiac failure. These patients may benefit from revascularisation if significant coronary disease is also present (‘ischaemic cardiomyopathy’). 5 Investigation of patients following myocardial infarction. Routine transfer to a centre with angiographic facilities after successful thrombolytic treatment is a grade D recommendation. There is no proof that a patient without continuing ischaemia has an improved prognosis when angiography and revascularisation are carried out routinely after infarction. The Open Artery Trial results suggest there is no benefit compared with optimal medical treatment for patients without ischaemic symptoms in having an occluded vessel opened five days or more after an infarction. However, spontaneous or induced ischaemia (by modified stress testing or perfusion imaging) leads to a grade B recommendation for angiography and intervention. The management of post-infarct patients is definitely easier if the coronary anatomy is known, and many units adopt the policy of early (within a week) angiography of infarct patients without contraindications to revascularisation. 6 Non-ST elevation acute coronary syndromes . 7 Acute myocardial infarction in a unit where primary angioplasty can be performed . Risks of cardiac catheterisation Cardiac catheterisation is an invasive procedure and patients must be aware of
BEST CARDIOLOGY HOSPITALS IN BANGALORE Cardiac failure Cardiac failure is an increasingly common condition affecting about 1% of the population but much higher proportions of older people. It is responsible for an increasing number of hospital admissions. The various aetiologies have been discussed above, but the most common cause is now ischaemic heart disease rather than hypertensive heart disease. This reflects the improved modern management of hypertension in the population. The definition of heart failure has always included reference to the inability of the heart to meet the metabolic needs of the body. The earliest concepts of heart failure were of inadequate cardiac pump function and associated salt and water retention. Treatment was aimed at improving cardiac contractility and removing salt and water from the body. In the 1970s the concept of after-load reduction was introduced. This was based partly on the realisation that vasoconstriction was part of the problem. This has led to the modern neuro-hormonal concept of heart failure. It is clear that many of the features of cardiac failure are a result of stimulation of the renin-angiotensin-aldosterone system and sympathetic stimulation. These responses of the body to the fall in cardiac output temporarily increase cardiac performance and blood pressure by increasing vascular volumes, cardiac contractility and systemic resistance. In the medium and longer term these responses are maladaptive. They increase cardiac work and left ventricular volumes and lead to myocardial fibrosis with further loss of myocytes. Most recently it has become clear that heart failure is also an inflammatory condition, with evidence of cytokine activation. Work is underway to establish a role for treatment of this part of the condition. Current drug treatment has been successful in blocking many of the maladaptive aspects of neuro-hormonal stimulation. Many of these treatments have become established after benefits have been ascertained in large randomised controlled trials. These trials have also led to the abandoning of certain drugs (often those that increase cardiac performance) that were shown to have a detrimental effect on survival (e.g. Milrinone). The principles of treatment of heart failure are as follows: 1 Remove the exacerbating factors. 2 Relieve fluid retention. 3 Improve left ventricular function and reduce cardiac work; improve prognosis. 4 Protect against the adverse effects of drug treatment. 5 Assess for further management (e.g. revascularisation, transplant). 6 Manage complications (e.g. arrhythmias). 7 Protect high-risk patients from sudden death.
1
false