http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 536 1
OK
background image not found
Found Update results for
'reciprocal depression'
5
THE BEST HEART SPECIALIST S IN YELAHANKA ST segment There are two aspects to report: depression and elevation. Depression The ST segment is said to be abnormal if it slopes down 1 mm or more from the J point—the end of the QRS complex (downsloping depression)—or is depressed 1 mm or more horizontally (plane depression). Depression of the J point itself may be normal, especially during exercise, but this upsloping ST depression should return to the isoelectric line within 0.08 seconds. The isoelectric line is defined as the PR or TP segment of the ECG . ST depression may be due to ischaemia, the effect of digoxin, hypertrophy and so on. Elevation ST elevation of up to 3 mm may be normal in V leads (especially the right), and up to 1 mm may be normal in limb leads. This ST elevation is called early repolarisation syndrome or pattern. Otherwise ST elevation may mean an acute myocardial infarction where it is said to represent a current of injury. Pericarditis also causes ST elevation but unlike infarction is usually associated with concave upwards elevation. hypertrophy and conduction defects like LBBB can be associated with ST elevation in leads where the QRS is mostly negative. T waves The T wave is always inverted in lead aVR and often in L3 and V1–V2, and in aVL if the R wave is less than 5 mm tall. Inversion and flattening are common and non-specific findings. Deep (> 5 mm) symmetrical and persistent (days to weeks) inversion is consistent with infarction; broad, ‘giant’ inversion may follow syncope from any cause including cerebrovascular accidents. Like the ST segment, the T wave tends to be directed opposite to the main QRS deflection in conduction defects (e.g. LBBB), VEBs or ventricular hypertrophy (where it is described as secondary ST/T changes or strain pattern). Tall peaked T waves are most often seen as a reciprocal change to inferior or posterior infarcts. They are classically seen in patients with hyperkalaemia. Broader large T waves are seen in early (‘hyperacute’) infarction and sometimes in cerebrovascular accidents. While not diagnostic by themselves (T waves never are), when they are associated with modest ST elevation (especially in V3) and reciprocal depression in the inferior leads, they indicate infarction or ischaemia. When these changes evolve over time they are even more specific for infarction A U wave may be prominent in patients with hypokalaemia, LVH and bradycardia. Isolated
CARDIAC CENTERS IN YELAHANKA NEW TOWN BANGALORE ST segment There are two aspects to report: depression and elevation. Depression The ST segment is said to be abnormal if it slopes down 1 mm or more from the J point—the end of the QRS complex (downsloping depression)—or is depressed 1 mm or more horizontally (plane depression). Depression of the J point itself may be normal, especially during exercise, but this upsloping ST depression should return to the isoelectric line within 0.08 seconds. The isoelectric line is defined as the PR or TP segment of the ECG . ST depression may be due to ischaemia, the effect of digoxin, hypertrophy and so on. Elevation ST elevation of up to 3 mm may be normal in V leads (especially the right), and up to 1 mm may be normal in limb leads. This ST elevation is called early repolarisation syndrome or pattern. Otherwise ST elevation may mean an acute myocardial infarction where it is said to represent a current of injury. Pericarditis also causes ST elevation but unlike infarction is usually associated with concave upwards elevation. hypertrophy and conduction defects like LBBB can be associated with ST elevation in leads where the QRS is mostly negative. T waves The T wave is always inverted in lead aVR and often in L3 and V1–V2, and in aVL if the R wave is less than 5 mm tall. Inversion and flattening are common and non-specific findings. Deep (> 5 mm) symmetrical and persistent (days to weeks) inversion is consistent with infarction; broad, ‘giant’ inversion may follow syncope from any cause including cerebrovascular accidents. Like the ST segment, the T wave tends to be directed opposite to the main QRS deflection in conduction defects (e.g. LBBB), VEBs or ventricular hypertrophy (where it is described as secondary ST/T changes or strain pattern). Tall peaked T waves are most often seen as a reciprocal change to inferior or posterior infarcts. They are classically seen in patients with hyperkalaemia. Broader large T waves are seen in early (‘hyperacute’) infarction and sometimes in cerebrovascular accidents. While not diagnostic by themselves (T waves never are), when they are associated with modest ST elevation (especially in V3) and reciprocal depression in the inferior leads, they indicate infarction or ischaemia. When these changes evolve over time they are even more specific for infarction . A U wave may be prominent in patients with hypokalaemia, LVH and bradycardia. Isolated U inversion is a specific but insensitive sign of coronary disease. 54 PRACTICAL CARDIOLOGY ECG reports Reports should be short and stereotyped, with the description clearly separated from the comment. It is a good general strategy to under-report, especially for a beginner. It is generally wiser to state ‘inferior Q waves noted’ or ‘non-specific ST/T changes’ than to indulge in speculation on possible or probable infarction or ischaemia. ECG labels tend to have serious employment and insurance implications. On the other hand, specific questions on the request form must be addressed, since they constitute the reason for taking the ECG in the first place.
THE BEST CARDIOLOGISTS IN YELAHANKA NEWTOWN BANGALORE ST segment There are two aspects to report: depression and elevation. Depression The ST segment is said to be abnormal if it slopes down 1 mm or more from the J point—the end of the QRS complex (downsloping depression)—or is depressed 1 mm or more horizontally (plane depression). Depression of the J point itself may be normal, especially during exercise, but this upsloping ST depression should return to the isoelectric line within 0.08 seconds. The isoelectric line is defined as the PR or TP segment of the ECG ST depression may be due to ischaemia, the effect of digoxin, hypertrophy and so on. Elevation ST elevation of up to 3 mm may be normal in V leads (especially the right), and up to 1 mm may be normal in limb leads. This ST elevation is called early repolarisation syndrome or pattern. Otherwise ST elevation may mean an acute myocardial infarction where it is said to represent a current of injury. Pericarditis also causes ST elevation but unlike infarction is usually associated with concave upwards elevation . hypertrophy and conduction defects like LBBB can be associated with ST elevation in leads where the QRS is mostly negative. T waves The T wave is always inverted in lead aVR and often in L3 and V1–V2, and in aVL if the R wave is less than 5 mm tall. Inversion and flattening are common and non-specific findings. Deep (> 5 mm) symmetrical and persistent (days to weeks) inversion is consistent with infarction; broad, ‘giant’ inversion may follow syncope from any cause including cerebrovascular accidents. Like the ST segment, the T wave tends to be directed opposite to the main QRS deflection in conduction defects (e.g. LBBB), VEBs ) or ventricular hypertrophy (where it is described as secondary ST/T changes or strain pattern). Tall peaked T waves are most often seen as a reciprocal change to inferior or posterior infarcts. They are classically seen in patients with hyperkalaemia. Broader large T waves are seen in early (‘hyperacute’) infarction and sometimes in cerebrovascular accidents. While not diagnostic by themselves (T waves never are), when they are associated with modest ST elevation (especially in V3) and reciprocal depression in the inferior leads, they indicate infarction or ischaemia. When these changes evolve over time they are even more specific for infarction A U wave may be prominent in patients with hypokalaemia, LVH and bradycardia. Isolated U inversion
Popular Cardiologist in yelahanka New Town, Bangalore• Duke treadmill score Exercise time in minutes n mm ST depression × 5 –n Angina (not limiting) –4 Angina (limiting) –8 Risk 1-year mortality Low risk > 5 0.25% Intermediate risk 4 to –10 1.25% High risk < –11 5.25% For example, a patient who exercised for 5 minutes but stopped because of limiting angina and had 2 mm of ST depression in the leads with maximum changes would have a score of –13 (that is, 5 [exercise time in minutes] – 2 × 5 [mm of ST depression × 5] – 8 [limiting angina] = –13). This represents a high risk of death
Popular Cardiologist in yelahanka New Town, Bangalore• Duke treadmill score Exercise time in minutes n mm ST depression × 5 –n Angina (not limiting) –4 Angina (limiting) –8 Risk 1-year mortality Low risk > 5 0.25% Intermediate risk 4 to –10 1.25% High risk < –11 5.25% For example, a patient who exercised for 5 minutes but stopped because of limiting angina and had 2 mm of ST depression in the leads with maximum changes would have a score of –13 (that is, 5 [exercise time in minutes] – 2 × 5 [mm of ST depression × 5] – 8 [limiting angina] = –13). This represents a high risk of death
1
false