http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 573 1
OK
background image not found
Found Update results for
'palpitations hyperdynamic circulation'
9
THE BEST CARDIOLOGISTS IN YELAHANKA Aortic regurgitation The incompetent aortic valve allows regurgitation of blood from the aorta to the left ventricle during diastole for as long as the aortic diastolic pressure exceeds the left ventricular diastolic pressure. Symptoms: Occur in the late stages of disease and include exertional dyspnoea, fatigue, palpitations (hyperdynamic circulation) and exertional angina. General signs: Marfan’s syndrome may be obvious. The pulse and blood pressure: The pulse is characteristically collapsing; there may be a wide pulse pressure. The neck: Prominent carotid pulsations (Corrigan’s sign). Palpation: The apex beat is characteristically displaced and hyperkinetic. A diastolic thrill may be felt at the left sternal edge when the patient sits up and breathes out. Auscultation): A2 (the aortic component of the second heart sound) may be soft; a decrescendo high-pitched diastolic murmur beginning immediately after the second heart sound and extending for a variable time into diastole—it is loudest at the third and fourth left intercostal spaces; a systolic ejection murmur is usually present (due to associated aortic stenosis or to torrential flow across a normal diameter aortic valve). Signs indicating severe chronic aortic regurgitation: Collapsing pulse; wide pulse pressure; long decrescendo diastolic murmur; left ventricular S3 (third heart sound); soft A2; signs of left ventricular failure. Causes of chronic aortic regurgitation: (i) Rheumatic (rarely the only murmur in this case), congenital; (ii) aortic root dilatation—Marfan’s syndrome, dissecting aneurysm. 8• THE PATIENT WITH A MURMUR 305 a b Valve cusps often thickened and calcified Left ventricle may be hypertrophied Ascending aorta may be dilated Systole Diastole S1 A2 P2 S1 Ejection click (Suggests congenital AS) Normal Mild S1 S1 Moderate S1 P2 A2 S1 Severe Reversed S2 Single (S2)
THE HYPERDYNAMIC STATE. MI with hyperdynamic state—that is, elevation of sinus rate, arterial pressure, and cardiac index, occurring singly or together in the presence of a normal or low left ventricular filling pressure—and if other causes of tachycardia such as fever, infection, and pericarditis can be excluded, treatment with beta blockers is indicated. Presumably, the increased heart rate and blood pressure are the result of inappropriate activation of the sympathetic nervous system, possibly secondary to augmented release of catecholamines, pain and anxiety, or some combination of these.
HEART SPECIALISTS IN SILKBOARD Complex congenital heart disease: conduits Anatomy and physiology Babies with a very abnormal right ventricular outflow tract such as pulmonary atresia can have a conduit fashioned to direct blood from the systemic veins more directly to the pulmonary arterial circulation or from a systemic artery to the pulmonary circulation. These conduits are made from veins or occasionally from Gortex. 368 PRACTICAL CARDIOLOGY Complications Conduits of all types have a limited life and tend to deteriorate after 10 years. These patients are also at risk of ventricular arrhythmias and heart block. Follow-up Patients need regular expert echocardiography to assess the conduit function. The conduit may deteriorate significantly before symptoms occur. Further treatment Conduit deterioration is usually an indication for further surgery although it can occasionally be treated with balloon dilatation. Pregnancy and contraception Pregnancy is well tolerated in patients with good conduit function. There are no particular problems with contraception. Sports Patients should avoid competitive and contact sports.
DIABETIC SPECIALIST IN YALAHANKA Syncope and dizziness The history Syncope is a transient loss of consciousness resulting from cerebral anoxia, usually due to inadequate blood flow. Syncope may represent a simple faint or be a symptom of cardiac or neurological disease. Establish whether the patient actually loses consciousness and under what circumstances the syncope occurs—for example, on standing for prolonged periods or standing up suddenly (postural syncope), while passing urine (micturition syncope), on coughing (tussive syncope) or with sudden emotional stress (vasovagal syncope). Find out whether there is any warning such as dizziness or palpitations, and how long the episodes last. Recovery may be spontaneous or require attention from bystanders. Bystanders may also have noticed abnormal movements if the patient has epilepsy, but these can also occur in primary syncope. If the patient’s symptoms appear to be postural, enquire about the use of anti-hypertensive or anti-anginal drugs and other medications that may induce postural hypotension. If the episode is vasovagal, it may be precipitated by something unpleasant like the sight of blood, or it may occur in a hot crowded room; patients often feel nauseated and sweaty before fainting and may have had prior similar episodes, especially during adolescence and young adulthood. The diagnosis of this relatively benign and very common cause of syncope can usually be made from the history. Patients with very typical symptoms rarely require extensive investigations. If syncope is due to an arrhythmia there is often sudden loss of consciousness regardless of the patient’s posture. A history of rapid and irregular palpitations or a diagnosis of atrial fibrillation in the past suggests the possibility of sick sinus syndrome. These patients have intermittent tachycardia, usually due to atrial fibrillation, and episodes of profound bradycardia, often due to complete heart block. Chest pain may also occur if the patient has aortic stenosis or hypertrophic cardiomyopathy. Exertional syncope may occur in these patients because of obstruction to left ventricular outflow by aortic stenosis or septal hypertrophy . Dizziness that occurs even when the patient is lying down or that is made worse by movements of the head is more likely to be of neurological origin (vertigo), although recurrent tachyarrhythmias may occasionally cause dizziness in any position. Try to decide whether the dizziness is really vertiginous (there is a sensation of movement or spinning of the surroundings or the patient’s head), or whether it is a presyncopal feeling. A family history of syncope or sudden death raises the possibility of an ion channel abnormality (long QT syndrome, Brugada syndrome or hypertrophic cardiomyopathy). Attempts should be made to find out what the diagnosis was for the affected relatives. A past history of severe structural heart disease, especially heart failure,
POPULAR CARDIOLOGIST IN AMRUTHA HALLI , BANGALORE Assessment of patients with hypertension A patient with definite or possible newly diagnosed hypertension needs at least a basic clinical assessment to look for possible aetiology, severity and signs of complications. The history Questioning should be directed towards the following areas. 1 Past history. Has hypertension been diagnosed before? What treatment was instituted? Why was it stopped? 2 Secondary causes. Important questions relate to: • a history of renal disease in the patient or his or her family, recurrent urinary tract infec-­ tions, heavy analgesic use or conditions leading to renal disease (e.g. systemic lupus erythematosus (SLE)) • symptoms suggesting phaeochromocytoma (flushing, sweats, palpitations) • symptoms suggesting sleep apnoea • muscle weakness suggesting the hypokalaemia of hyperaldosteronism • Cushing’s syndrome (weight gain, skin changes) • family history of hypertension. 3 Aggravating factors: • high salt intake • high alcohol intake • lack of exercise • use of medications: NSAIDs, appetite suppressants, nasal decongestants, monoamine oxidase inhibitors, ergotamine, cyclosporin, oestrogen-containing contraceptive pills • other: use of cocaine, liquorice, amphetamines. 4 Target organ damage: • stroke or transient ischaemic attack (TIA) • angina, dyspnoea • fatigue, oliguria • visual disturbance • claudication. 5 Coexisting risk factors: • smoking • diabetes • lipid levels, if known
ECHOCARDIOLOGIST IN GANGAMMA CIRCLE Mitral regurgitation A regurgitant mitral valve allows part of the left ventricular stroke volume to regurgitate into the left atrium, imposing a volume load on both the left atrium and the left ventricle. Symptoms: Dyspnoea (increased left atrial pressure); fatigue (decreased cardiac output). General signs: Tachypnoea. The pulse: Normal, or sharp upstroke due to rapid left ventricular decompression; atrial fibrillation is relatively common. Palpation: The apex beat may be displaced, diffuse and hyperdynamic if left ventricular enlargement has occurred; a pansystolic thrill may be present at the apex; a parasternal impulse (due to left atrial enlargement behind the right ventricle—the left atrium is often larger in mitral regurgitation than in mitral stenosis and can be enormous). All these signs suggest severe mitral regurgitation. Auscultation Soft or absent S1 (by the end of diastole, atrial and ventricular pressures have equalised and the valve cusps have drifted back together); left ventricular S3, due to rapid left ventricular filling in early diastole; pansystolic murmur maximal at the apex and usually radiating towards the axilla. Causes of chronic mitral regurgitation: (i) Degenerative; (ii) rheumatic; (iii) mitral valve prolapse; (iv) papillary muscle dysfunction, due to left ventricular failure or ischaemia.
THE BEST CARDIOLOGIST IN YELAHANKA Mitral regurgitation A regurgitant mitral valve allows part of the left ventricular stroke volume to regurgitate into the left atrium, imposing a volume load on both the left atrium and the left ventricle. Symptoms: Dyspnoea (increased left atrial pressure); fatigue (decreased cardiac output). General signs: Tachypnoea. The pulse: Normal, or sharp upstroke due to rapid left ventricular decompression; atrial fibrillation is relatively common. Palpation: The apex beat may be displaced, diffuse and hyperdynamic if left ventricular enlargement has occurred; a pansystolic thrill may be present at the apex; a parasternal impulse (due to left atrial enlargement behind the right ventricle—the left atrium is often larger in mitral regurgitation than in mitral stenosis and can be enormous). All these signs suggest severe mitral regurgitation. Auscultation Soft or absent S1 (by the end of diastole, atrial and ventricular pressures have equalised and the valve cusps have drifted back together); left ventricular S3, due to rapid left ventricular filling in early diastole; pansystolic murmur maximal at the apex and usually radiating towards the axilla. Causes of chronic mitral regurgitation: (i) Degenerative; (ii) rheumatic; (iii) mitral valve prolapse; (iv) papillary muscle dysfunction, due to left ventricular failure or ischaemia. Mitral valve prolapse (systolic-click murmur syndrome) This syndrome can cause a systolic murmur or click, or both, at the apex. The presence of the murmur indicates that there is some mitral regurgitation present. Auscultation: Systolic click or clicks at a variable time (usually mid-systolic) may be the only abnormality audible, but a click is not always audible; systolic
POPULAR CARDIOLOGIST IN KATTIGENAHALLI, BANGALORE Cyanotic congenital heart disease Some of the more common cyanotic lesions are discussed below. There are, however, a number of problems common to patients with cyanotic heart disease. 1 Erythrocytosis. Chronic cyanosis causes an increase in red cell numbers as a way of increasing oxygen carrying capacity. The platelet count is sometimes reduced and the white cell count normal. The increased blood viscosity associated with the high red cell mass causes a slight increase in the risk of stroke.37 Most patients have a stable elevated haemoglobin level, but venesection is recommended if this is greater than 20 g/dL and the haematocrit is greater than 65%. Levels as high as this can be associated with the hyperviscosity syndrome: headache, fatigue and difficulty concentrating. Recurrent venesection can cause iron depletion and the production of microcytic red cells, which are stiffer than normal cells and so increase viscosity further. 2 Bleeding. Reduced platelet numbers, abnormal platelet function and clotting factor deficiencies mean these patients have an increased risk of haemorrhage. The most dangerous problem is pulmonary haemorrhage but bleeding from the gums and menorrhagia are more common. The use of anticoagulation must be restricted to those with a strong indication for treatment. 3 Gallstones. Chronic cyanosis and increased haem turnover are associated with an increased incidence of pigment gallstones. 4 Renal dysfunction and gout. Congestion of the renal glomeruli is associated with a reduced glomerular filtration rate and proteinuria. This and the increased turnover of red cells lead to urate accumulation and gout. 5 Pulmonary hypertension. Lesions associated with increased flow through the pulmonary circulation (e.g. a large atrial septal defect) can lead to a reactive rise in pulmonary arterial resistance. This is more likely to occur if the left to right shunt is large. Eventually these pulmonary vascular changes become irreversible, pulmonary pressures equal or exceed systemic pressures, and central cyanosis occurs because the intra-cardiac shunt reverses (Eisenmenger’s syndrome). Flow is now from right to left. There is then no benefit in attempting to correct the underlying cardiac abnormality. Earlier and more successful treatment of children with congenital heart disease has reduced the number of patients with this inexorable disease. Careful management of these conditions can nevertheless improve patients’ symptoms and survival. Reasonable exercise tolerance is usually maintained into adult life for most patients but progressive deterioration then occurs. Haemorrhagic complications, especially haemoptysis, are common. Thrombotic stroke, cerebral abscess and pulmonary infarction can also occur.
CARDIOLOGISTS IN H S R LAYOUT BANGALORE Cyanotic congenital heart disease Some of the more common cyanotic lesions are discussed below. There are, however, a number of problems common to patients with cyanotic heart disease. 1 Erythrocytosis. Chronic cyanosis causes an increase in red cell numbers as a way of increasing oxygen carrying capacity. The platelet count is sometimes reduced and the white cell count normal. The increased blood viscosity associated with the high red cell mass causes a slight increase in the risk of stroke.37 Most patients have a stable elevated haemoglobin level, but venesection is recommended if this is greater than 20 g/dL and the haematocrit is greater than 65%. Levels as high as this can be associated with the hyperviscosity syndrome: headache, fatigue and difficulty concentrating. Recurrent venesection can cause iron depletion and the production of microcytic red cells, which are stiffer than normal cells and so increase viscosity further. 2 Bleeding. Reduced platelet numbers, abnormal platelet function and clotting factor deficiencies mean these patients have an increased risk of haemorrhage. The most dangerous problem is pulmonary haemorrhage but bleeding from the gums and menorrhagia are more common. The use of anticoagulation must be restricted to those with a strong indication for treatment. 3 Gallstones. Chronic cyanosis and increased haem turnover are associated with an increased incidence of pigment gallstones. 4 Renal dysfunction and gout. Congestion of the renal glomeruli is associated with a reduced glomerular filtration rate and proteinuria. This and the increased turnover of red cells lead to urate accumulation and gout. 5 Pulmonary hypertension. Lesions associated with increased flow through the pulmonary circulation (e.g. a large atrial septal defect) can lead to a reactive rise in pulmonary arterial resistance. This is more likely to occur if the left to right shunt is large. Eventually these pulmonary vascular changes become irreversible, pulmonary pressures equal or exceed systemic pressures, and central cyanosis occurs because the intra-cardiac shunt reverses (Eisenmenger’s syndrome). Flow is now from right to left. There is then no benefit in attempting to correct the underlying cardiac abnormality. Earlier and more successful treatment of children with congenital heart disease has reduced the number of patients with this inexorable disease. Careful management of these conditions can nevertheless improve patients’ symptoms and survival. Reasonable exercise tolerance is usually maintained into adult life for most patients but progressive deterioration then occurs. Haemorrhagic complications, especially haemoptysis, are common. Thrombotic stroke, cerebral abscess and pulmonary infarction can also occur. 364 PRACTICAL CARDIOLOGY In a recent European survey, survival for patients with simple defects and Eisenmenger’s was to 32.5 years, but only 25.8 years for those with Eisenmenger’s resulting from complex abnormalities.38 There is a 50% maternal mortality risk with pregnancy. Quite minor surgical procedures are associated with high risk. Trials with endothelin antagonists are being conducted and continuous oxygen treatment can provide symptomatic relief. Lung and heart lung transplant should be considered for some of these patients. 6 Endocarditis. Most patients with congenital heart disease have a lifelong risk of infective endocarditis. Constant reminders of this risk should be given to the patients and their usual doctors. As well as appropriate antibiotic prophylaxis . before procedures, a high index of suspicion is very important. A febrile illness should not be treated with antibiotics until at least two sets of blood cultures have been taken. Early referral
1
false