SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 534 1
background image not found
Found Update results for
'niddk health topic'
How sleeping less than 6 hours affects your health After being awake for almost 14-16 hours, our body demands sleep. Minimum sleeping time required for a healthy mind and body is 7-8 hours. Although, this duration varies according to age. Because generally speaking, where a child can sleep for 12-14 hours, grownups can sleep for not more than 9 hours. Sound sleep is very essential otherwise, it can be harmful for our health. Let’s see how sleeping for less than 6 hours affects our health. Headache, weight gain and poor vision: When you sleep for less than 6 hours a day, it can not only give you headache all the time but can lead to a poor vision also. And if continued for a long time, may hamper your eyesight. The lesser you sleep the more weight you gain. And after-effects of gaining weight could be even more hazardous. Memory loss, heart disease, infection: Sleeplessness can have an adverse effect on one’s memory too. A person may find it difficult to remember even simple things. Also, infections can take a longer time to heal because sleep is something that stabilises and balances everything that goes wrong while we are awake. If we don’t get proper sleep, the process of healing takes longer. Lack of sleep can also elevate blood pressure which ultimately affects the heart. Urine overproduction, stammering and accident: Sleeping slows down urinating process but when you are awake for longer hours, you might have to urinate more than usual. Lack of sleep can also make you stammer while speaking. If lack of sleep continues, you may not be able to communicate properly. When you do not have sound sleep, your mental condition would not be stable because of declining concentration. You can be accident prone if you drive in such a condition. These are just a few of the ill effects. Sleeping for less than 5 hours is far more dangerous than you can even think. From behavioural to mental to physical effects, it can harm you in many more ways, So, have a sound sleep to avoid complications in life.
the best cardiac clinics in yelahanka new town bangalore Ventricular arrhythmias Ventricular ectopic beats Like SVEBs, VEBs are common and, by themselves, generally harmless. Past attempts to suppress them as harbingers of malignant arrhythmias have caused more harm than good. Nevertheless, recognition of their electrocardiographic morphology and behaviour remain important. VEBs that have a fixed coupling to the preceding beats are thought to represent a localised ventricular re-entry and are said to be extra-systolic (extra-systoles). In the top strip of they each replace a sinus beat, with a sinus P wave buried inside the ectopic QRS; their pauses are exactly (fully) compensatory. In the bottom strip, the pause cannot be quantified but, unlike the aberrant beats of Ashman’s phenomenon in , there is hint of a compensatory pause, even during AF. Also unlike aberrant beats in Figure 3.33, the VEBs do not come after the longest cycles in AF. VEBs with same morphology but variable coupling intervals usually represent a continuous discharge from an ectopic focus, like a fixed-rate electronic pacemaker. They capture the ventricles whenever the latter are not refractory and, when they occur at the right time, produce ventricular fusion beats. Fusion beats occur when impulses from two origins, in the case seen in from the sinus node and the parasystolic focus, occur at almost the same time. The resultant QRS complex has features of both types of beat. These VEBs are called parasystolic
PAPULAR CARDIOLOGISTS IN HEBBALA ECG interpretation: points to remember 1 ECG reports should be short and based on clinical information where possible. 2 Check that the patient’s name is on the ECG and that the paper speed and calibration markers are correct. 3 Measure or estimate the heart rate—3 large squares = 100/minute. 4 Establish the rhythm. Look for P waves (best seen in L2). Are the P waves followed by QRS complexes? Look for anomalously conducted or ectopic beats. 5 Measure the intervals: PR, QRS duration and QT interval (for the latter, consult tables, but normal is less than 50% of the RR interval). 6 If the QRS complex is wide (> 3 small squares) consider the possibilities: LBBB, RBBB, WPW or ventricular rhythm or beats. If the pattern is of LBBB, there is no need in most cases to attempt further interpretation. 7 Estimate the QRS axis. In LAD, L1 and aVF diverge and L2 is predominantly negative. In RAD, L1 and aVF converge, while L2 matters little. Indeterminate axis is diagnosed when all six frontal leads are (more or less) equiphasic. 8 Check whether the criteria for LAHB or LAFB have been met. 9 Look for pathological Q waves. In general these are longer than 0.04 seconds and are more than 25% of the size of the following R wave.
POPULAR CARDIOLOGISTS IN H S R LAYOUT Ventricular tachycardia Ventricular tachycardia is defined as three or more ventricular ectopic beats at a rate over 100/minute. It is said to be sustained if it lasts more than 30 seconds. Most broad-complex tachycardias are ventricular (rather than supraventricular with aberrant conduction). The diagnosis of VT is greatly strengthened if there is a history of myocardial infarction or cardiac failure but, oddly enough, the patient’s haemodynamics are of no help. A number of criteria have evolved over the years to help ascertain the diagnosis of VT over aberrancy. These include: evidence of AV dissociation—P waves can be seen unrelated to the QRS complexes (they are usually visible only at relatively slow VT rates) the presence of supraventricular capture or fusion beats visible retrograde conduction with 2:1 block (P waves visible following every second complex) the presence of monophasic R, qR or QR patterns in V1, provided a septal infarction has not modified a RBBB a taller left rabbit ear in RR' or qRR' complexes in V1 n QS complexes in V1 with a slow S descent and sharp upstroke—the opposite of LBBB—or a broad small primary R wave in rS morphology (the Rosenbaum pattern) RAD in the frontal plane with LBBB-like QRS complexes
POPULAR CARDIOLOGISTS IN SILK BOARD Atrial tachycardia with block Atrial tachycardia with block (paroxysmal atrial tachycardia (PAT) with block) is also an autonomous (automatic, ectopic) atrial tachycardia but its P waves are usually smaller (often discernible only in lead V1) and faster. As a result of this high rate, AV block—mostly 2:1, but often variable—is usually present prior to any exposure to drugs or vagal manoeuvres ). inthe past this was one of the classic manifestations of digoxin toxicity. It can be difficult to distinguish from other atrial rhythms such as AF, flutter and even sinus rhythm ..