http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 575 1
OK
background image not found
Found Update results for
'movement problems'
9
HEART SPEACIALISTS IN BANGALORE Stress echocardiography Ischaemic areas of myocardium are known to have reduced contraction compared with normal areas. This can be demonstrated by high-quality echocardiograms. A number of standard views of the heart are obtained and the wall is divided into regions that are assessed for reduced motion. The echo equipment must be designed to store rest images and to present them next to stress images on a split screen so that direct comparison can be made. The stress can be provided by exercise or dobutamine infusion. Exercise echocardiography is difficult to perform because of movement problems and there is quite high inter-reporter variability, but both techniques can approach the accuracy of sestamibi testing in experienced hands. It is not possible to obtain images of adequate quality in all patients.
Heart and diabetic center in yelahanka. this centre was basically established to cater to all the patients with heart and diabetic problems under one roof
THE BEST CARDIOLOGISTS IN YELAHANKA Indications for coronary angiography 1 Angina not responding to medical treatment in a patient without contraindications (e.g. extreme old age—usually older than about 85 these days—or severe co-morbidities) to cardiac surgery or angioplasty. 2 Continuing chest pain whose cause is not clear despite non-invasive investigations. The procedure may well be worthwhile if it reveals normal coronary arteries and prevents a patient being treated unnecessarily with more and more anti-anginal drugs. Non-invasive investigations are more often equivocal in women, and more women than men are found to have normal coronaries at angiography. 3 Preparation of a patient older than 35 or so for some other cardiac surgery (e.g. valve replacement). The surgeon needs to know whether significant coronary disease is present so that coronary grafting can be performed at the time of valve surgery. Otherwise, patients are at risk of ischaemic problems in the post-operative period. 4 Diagnosis of cardiomyopathy (p. 267) by excluding coronary artery disease and infarction as the cause of angina or cardiac failure. These patients may benefit from revascularisation if significant coronary disease is also present (‘ischaemic cardiomyopathy’). 5 Investigation of patients following myocardial infarction. Routine transfer to a centre with angiographic facilities after successful thrombolytic treatment is a grade D recommendation. There is no proof that a patient without continuing ischaemia has an improved prognosis when angiography and revascularisation are carried out routinely after infarction. The Open Artery Trial results suggest there is no benefit compared with optimal medical treatment for patients without ischaemic symptoms in having an occluded vessel opened five days or more after an infarction. However, spontaneous or induced ischaemia (by modified stress testing or perfusion imaging) leads to a grade B recommendation for angiography and intervention. The management of post-infarct patients is definitely easier if the coronary anatomy is known, and many units adopt the policy of early (within a week) angiography of infarct patients without contraindications to revascularisation. 6 Non-ST elevation acute coronary syndromes (p. 156). 7 Acute myocardial infarction in a unit where primary angioplasty can be performed
IHEART SPECIALISTS IN HEBBALA ndications for coronary angiography 1 Angina not responding to medical treatment in a patient without contraindications (e.g. extreme old age—usually older than about 85 these days—or severe co-morbidities) to cardiac surgery or angioplasty. 2 Continuing chest pain whose cause is not clear despite non-invasive investigations. The procedure may well be worthwhile if it reveals normal coronary arteries and prevents a patient being treated unnecessarily with more and more anti-anginal drugs. Non-invasive investigations are more often equivocal in women, and more women than men are found to have normal coronaries at angiography. 3 Preparation of a patient older than 35 or so for some other cardiac surgery (e.g. valve replacement). The surgeon needs to know whether significant coronary disease is present so that coronary grafting can be performed at the time of valve surgery. Otherwise, patients are at risk of ischaemic problems in the post-operative period. 4 Diagnosis of cardiomyopathy (p. 267) by excluding coronary artery disease and infarction as the cause of angina or cardiac failure. These patients may benefit from revascularisation if significant coronary disease is also present (‘ischaemic cardiomyopathy’). 5 Investigation of patients following myocardial infarction. Routine transfer to a centre with angiographic facilities after successful thrombolytic treatment is a grade D recommendation. There is no proof that a patient without continuing ischaemia has an improved prognosis when angiography and revascularisation are carried out routinely after infarction. The Open Artery Trial results suggest there is no benefit compared with optimal medical treatment for patients without ischaemic symptoms in having an occluded vessel opened five days or more after an infarction. However, spontaneous or induced ischaemia (by modified stress testing or perfusion imaging) leads to a grade B recommendation for angiography and intervention. The management of post-infarct patients is definitely easier if the coronary anatomy is known, and many units adopt the policy of early (within a week) angiography of infarct patients without contraindications to revascularisation. 6 Non-ST elevation acute coronary syndromes . 7 Acute myocardial infarction in a unit where primary angioplasty can be performed . Risks of cardiac catheterisation Cardiac catheterisation is an invasive procedure and patients must be aware of
CARDIOLOGIST IN DODDABOMMASANDRA, BANGALORE Cardiac rehabilitation Although rehabilitation has been a part of the management of patients following a myocardial infarction since the beginning of the last century, ideas have changed radically about the form this should take. In the early 1900s Sir Thomas Lewis insisted his patients remain in bed and be ‘guarded by day and night nursing and helped in every way to avoid voluntary movement or effort’. These severe restrictions were continued for at least six to eight weeks. The thinking was that complete rest would reduce the risk of aneurysm formation and avoid hypoxia that might cause arrhythmias. Even after discharge mild exertion was discouraged for up to a year and return to work was most unusual. In the 1970s periods of bed rest of between one and four weeks were enforced and patients remained in hospital for up to four weeks. It is now clear that this de-conditioning has many adverse physical and psychological effects. Patients with uncomplicated infarcts are now mobilised in hospital within a day or so of admission and are often discharged on the third day if successful primary angioplasty has been performed. Many hospitals provide a supervised rehabilitation program for patients who have had an infarct or episode of unstable angina. The program begins in hospital as soon as possible after admission. It includes a graded exercise regimen and advice about risk factor control. Such programs have many benefits for patients to help them to return quickly to normal life, including work and sexual activity. The supervised exercise regimen helps restore the patient’s confidence. There is clear evidence of the benefits of exercise for patients with ischaemic heart disease.54 Rehabilitation programs have been shown to be cost-effective. Well-conducted programs are tailored to individual patients’ needs and are very popular with many patients.55 There are often long-term exercise groups available for people who have completed the formal classes. Non-cardiac causes of chest pain Pulmonary embolism
POPULAR CARDIOLOGIST IN KATTIGENAHALLI, BANGALORE Cyanotic congenital heart disease Some of the more common cyanotic lesions are discussed below. There are, however, a number of problems common to patients with cyanotic heart disease. 1 Erythrocytosis. Chronic cyanosis causes an increase in red cell numbers as a way of increasing oxygen carrying capacity. The platelet count is sometimes reduced and the white cell count normal. The increased blood viscosity associated with the high red cell mass causes a slight increase in the risk of stroke.37 Most patients have a stable elevated haemoglobin level, but venesection is recommended if this is greater than 20 g/dL and the haematocrit is greater than 65%. Levels as high as this can be associated with the hyperviscosity syndrome: headache, fatigue and difficulty concentrating. Recurrent venesection can cause iron depletion and the production of microcytic red cells, which are stiffer than normal cells and so increase viscosity further. 2 Bleeding. Reduced platelet numbers, abnormal platelet function and clotting factor deficiencies mean these patients have an increased risk of haemorrhage. The most dangerous problem is pulmonary haemorrhage but bleeding from the gums and menorrhagia are more common. The use of anticoagulation must be restricted to those with a strong indication for treatment. 3 Gallstones. Chronic cyanosis and increased haem turnover are associated with an increased incidence of pigment gallstones. 4 Renal dysfunction and gout. Congestion of the renal glomeruli is associated with a reduced glomerular filtration rate and proteinuria. This and the increased turnover of red cells lead to urate accumulation and gout. 5 Pulmonary hypertension. Lesions associated with increased flow through the pulmonary circulation (e.g. a large atrial septal defect) can lead to a reactive rise in pulmonary arterial resistance. This is more likely to occur if the left to right shunt is large. Eventually these pulmonary vascular changes become irreversible, pulmonary pressures equal or exceed systemic pressures, and central cyanosis occurs because the intra-cardiac shunt reverses (Eisenmenger’s syndrome). Flow is now from right to left. There is then no benefit in attempting to correct the underlying cardiac abnormality. Earlier and more successful treatment of children with congenital heart disease has reduced the number of patients with this inexorable disease. Careful management of these conditions can nevertheless improve patients’ symptoms and survival. Reasonable exercise tolerance is usually maintained into adult life for most patients but progressive deterioration then occurs. Haemorrhagic complications, especially haemoptysis, are common. Thrombotic stroke, cerebral abscess and pulmonary infarction can also occur.
POPULAR CARDIOLOGISTS IN KATTIGENAHALLI, BANGALORE Indications for coronary angiography 1 Angina not responding to medical treatment in a patient without contraindications (e.g. extreme old age—usually older than about 85 these days—or severe co-morbidities) to cardiac surgery or angioplasty. 2 Continuing chest pain whose cause is not clear despite non-invasive investigations. The procedure may well be worthwhile if it reveals normal coronary arteries and prevents a patient being treated unnecessarily with more and more anti-anginal drugs. Non-invasive investigations are more often equivocal in women, and more women than men are found to have normal coronaries at angiography. 3 Preparation of a patient older than 35 or so for some other cardiac surgery (e.g. valve replacement). The surgeon needs to know whether significant coronary disease is present so that coronary grafting can be performed at the time of valve surgery. Otherwise, patients are at risk of ischaemic problems in the post-operative period. 4 Diagnosis of cardiomyopathy (p. 267) by excluding coronary artery disease and infarction as the cause of angina or cardiac failure. These patients may benefit from revascularisation if significant coronary disease is also present (‘ischaemic cardiomyopathy’). 5 Investigation of patients following myocardial infarction. Routine transfer to a centre with angiographic facilities after successful thrombolytic treatment is a grade D recommendation. There is no proof that a patient without continuing ischaemia has an improved prognosis when angiography and revascularisation are carried out routinely after infarction. The Open Artery Trial results suggest there is no benefit compared with optimal medical treatment for patients without ischaemic symptoms in having an occluded vessel opened five days or more after an infarction. However, spontaneous or induced ischaemia (by modified stress testing or perfusion imaging) leads to a grade B recommendation for angiography and intervention. The management of post-infarct patients is definitely easier if the coronary anatomy is known, and many units adopt the policy of early (within a week) angiography of infarct patients without contraindications to revascularisation. 6 Non-ST elevation acute coronary syndromeS. 7 Acute myocardial infarction in a unit where primary angioplasty can be performed).
CADIOLOGISTS IN VIDHYARANYAPURA Coronary angiography (cardiac catheterisation) This procedure enables the cardiologist to visualise the coronary arteries It is the standard against which other less-invasive investigations are assessed. Selective catheterisation of the right and left coronary ostia is performed. Contrast is then injected into the vessels and digital tape or disc storage of the images obtained. In most hospitals the patient is admitted on the morning of the test and allowed to go home that afternoon. The procedure is most often performed through the femoral artery (Judkins technique) This artery can be punctured through the skin under local anaesthetic. A fine softtipped guide wire is then advanced into the artery and the needle withdrawn (Seldinger method). A short guiding sheath can then be placed over the wire and long cardiac catheters advanced through this sheath along a long guide wire into the femoral artery and up via the aorta to the aortic arch. The catheter and wire are advanced under X-ray control. Usually one catheter with a curved tip (pig-tail catheter; is advanced across the aortic valve into the left ventricle where left ventricular pressures are measured via a pressure transducer connected to the other end of the catheter. Measurement of the left ventricular end-diastolic pressure gives an indication of left ventricular function. Raised end-diastolic pressure (over 15 mmHg) suggests left ventricular dysfunction The catheter is then connected to a pressure injector. This enables injection of a large volume of contrast over a few seconds; for example, 35 mL at 15 mL/second. X-ray recording during injection produces a left ventriculogram . Here left ventricular contraction can be assessed and the ejection fraction (percentage of end-diastolic volume ejected with each systole) estimated. The normal is 60% or more. The figure obtained by this method tends to be higher than that produced by the nuclear imaging method—gated blood pool scanning. The guide wire is reintroduced and the catheter withdrawn to be replaced by one shaped to fit into the right or left coronary orifice. Hand injections of 5–10 mL of contrast are then made. Modern equipment enables numerous views of the coronaries to be obtained in both right and 4• THE PATIENT WITH CHEST PAIN 129 left oblique and caudal and cranial angulated views. The left system (left main, left anterior descending and circumflex arteries) is more complicated than the right, and more views are obtained ) It is also possible to catheterise the heart by direct puncture of the radial artery at the wrist, using a long sheath and a technique similar to the Judkins. Problems may be encountered advancing the catheters around the shoulder or if spasm of the radial or brachial artery occurs.
HEART DOCTORS IN YELAHANKA NEWTOWN, BANGALORE Management of ACS (NSTEACS) Patients with this diagnosis represent a rather heterogeneous group. Some have had the recent onset of angina at the extremes of exercise, others have angina at rest associated with ECG changes. This variation has made attempts to study the effects of different treatment rather difficult. Although the majority of patients with myocardial infarction have a preceding period of unstable angina, only about 5% of all patients admitted to hospital with a diagnosis of an ACS go on to infarct during that admission. The in-hospital mortality for these patients is low. Mortality rates of less than 2% are usual. Nevertheless, there is a real short-term and longerterm risk of infarction, recurrent admission with unstable symptoms and death which is higher than that of patients with stable angina. The diagnosis should therefore lead to admission to a CCU. The cardiac enzymes are, by definition, not elevated in these patients but the newer, more sensitive tests for troponin T and troponin I may be abnormal and indicate a worse prognosis . In the CCU, bed rest, oxygen and ECG monitoring are routinely enforced and any mobile phones taken away (allegedly to protect the monitoring equipment). Recurrence of chest pain can be assessed quickly and ECGs performed to look for changes suggesting infarction. The cardiac biomarkers can be checked regularly. All patients should receive aspirin (300 mg) unless there is a contraindication. Patients with an intermediate or a higher risk should also be given clopidogrel (usually a 300–600 mg loading dose). The use of intravenous heparin has become standard treatment. A typical starting dose is 5000 units as a bolus followed by 24, 000 units over 24 hours. The activated partial thromboplastin time (APPT) should be measured after about six hours of treatment and the infusion rate of heparin adjusted to maintain this at about twice normal. Heparin is generally safe when used in this way. Bleeding problems may sometimes occur and the platelet count should be checked every few days so that heparin-induced thrombocytopenia (HITS), a rare but serious complication, can be detected early. Low molecular weight heparins are at least as effective as unfractionated heparin. These drugs have some advantages over heparin. Their dose response effect is more predictable and they cause less thrombocytopenia. They are effective given subcutaneously without APPT monitoring and are now cheaper than IV heparin when savings on APPT monitoring and the use of infusion sets are considered. A standard twice-daily dose is given according to the patient’s weight—1 mg/kg for enoxaparin (Clexane). The dose is reduced by half for those with moderate or severe renal impairment and for those over the age of 75. Additional treatment should include beta-blockers unless these are contraindicated. These drugs reduce the number of ischaemic episodes and probably the risk of myocardial infarction. Nitrates can be a useful adjunctive treatment. They may be given orally, topically or intravenously. The IV dose can be titrated up or down depending on the amount of pain the patient is experiencing and the severity of side effects such as hypotension and headache. The problem of tachyphylaxis with nitrates can be overcome by steady increases in the IV dose if necessary. Calcium antagonists are appropriate treatment for patients intolerant of beta-blockers and may sometimes be added to beta-blockers. Nifedipine, especially in its short-acting form, should not be used for patients with acute coronary syndromes unless they are already taking beta-blockers. Thrombolytic drugs have been disappointing when used for NSTEACS. In trials where they have been used for patients with ischaemic chest pain but without ST elevation there has been a trend towards an adverse outcome. This may be related to the rebound hypercoagulable state that can occur after their use. In general they should not be used for the treatment of NSTEACS. Glycoprotein IIb/IIIa inhibitors (p. 198) should be given for high-risk patients,
1
false