http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 536 1
OK
background image not found
Found Update results for
'fatal stroke'
5
THE BEST CARDIOLOGIST IN HEBBALA Hypertension as a risk factor Hypertension is a risk factor for coronary disease, but even more so for cerebrovascular disease and left ventricular failure.1 Control of blood pressure reduces this risk. Large randomised trials have shown that every 10–14 mmHg reduction in systolic and 5 mmHg reduction in diastolic blood pressure confers a 29% reduction in CHD risk and a 40% reduction in stroke risk. The risk of a coronary event in a man with blood pressure greater than 160/95 is five times the risk in a man with blood pressure of 140/90 or less. Hypertension can be diagnosed only by blood pressure measurements. There is little evidence that high blood pressure causes symptoms, except for malignant hypertension with cerebral oedema. The symptoms often ascribed to hypertension—epistaxis, dizziness, headache and fainting—are no more common in hypertensives than in normotensives. Anxiety (often about the blood pressure) and hyperventilation may explain some of these symptoms.2 The trials providing the above figures have been carried out using diuretics or beta-­blockers in the treatment of hypertension. Because these drugs may adversely affect lipid profiles and therefore coronary risk, it has been suggested that newer agents may produce a greater reduction in the risk of CHD events. However, this has not been proven. There is evidence from metaanalyses of blood pressure lowering trials that beta-blockers are less protective against stroke than other agents. They are more effective than placebo in providing protection against stroke. The reduction in blood pressure that is achieved is still more important than the choice of drug. The trials have shown that blood pressure reduction in the elderly, including those over the age of 80, is associated with reduced cardiovascular morbidity but not all-cause (overall) mortality. Treatment of isolated systolic hypertension, common in the elderly, has also shown benefit in terms of the reduced risk of stroke, cardiac failure and coronary disease.3 As in the case of other risk factors, the greatest absolute benefit in the treatment of hyper-­ tension is gained in those patients with existing heart disease, diabetes or multiple risk factors. Blood pressure is an important component of the total risk score . The effects of hypertension Cardiovascular Sustained hypertension results in increased left ventricular wall thickness (left ventricular hypertro-­ phy, LVH) and may ultimately lead to left ventricular dilatation and cardiac failure. LVH results in higher oxygen demands by the ventricle, making angina more likely. The mechanism by which hypertension is thought to increase CHD risk is mechanical damage to the endothelium, leading to increased permeability and therefore increased atherogenesis. Elevated blood pressure interacts with other hereditary and acquired risk factors, all of which are associated with endothelial dysfunction; some are probably implicated in the genesis of hypertension in the first place.4 Neurological Hypertension
GOOD AND WELL CARDIOLOGISTS IN SILKBOARD BANGALORE Hypertension as a risk factor Hypertension is a risk factor for coronary disease, but even more so for cerebrovascular disease and left ventricular failure.1 Control of blood pressure reduces this risk. Large randomised trials have shown that every 10–14 mmHg reduction in systolic and 5 mmHg reduction in diastolic blood pressure confers a 29% reduction in CHD risk and a 40% reduction in stroke risk. The risk of a coronary event in a man with blood pressure greater than 160/95 is five times the risk in a man with blood pressure of 140/90 or less. Hypertension can be diagnosed only by blood pressure measurements. There is little evidence that high blood pressure causes symptoms, except for malignant hypertension with cerebral oedema. The symptoms often ascribed to hypertension—epistaxis, dizziness, headache and fainting—are no more common in hypertensives than in normotensives. Anxiety (often about the blood pressure) and hyperventilation may explain some of these symptoms.2 The trials providing the above figures have been carried out using diuretics or beta-­blockers in the treatment of hypertension. Because these drugs may adversely affect lipid profiles and therefore coronary risk, it has been suggested that newer agents may produce a greater reduction in the risk of CHD events. However, this has not been proven. There is evidence from metaanalyses of blood pressure lowering trials that beta-blockers are less protective against stroke than other agents. They are more effective than placebo in providing protection against stroke. The reduction in blood pressure that is achieved is still more important than the choice of drug. The trials have shown that blood pressure reduction in the elderly, including those over the age of 80, is associated with reduced cardiovascular morbidity but not all-cause (overall) mortality. Treatment of isolated systolic hypertension, common in the elderly, has also shown benefit in terms of the reduced risk of stroke, cardiac failure and coronary disease.3 As in the case of other risk factors, the greatest absolute benefit in the treatment of hyper-­ tension is gained in those patients with existing heart disease, diabetes or multiple risk
ECHOCARDIOLOGIST IN GANGAMMA CIRCLE Mitral regurgitation A regurgitant mitral valve allows part of the left ventricular stroke volume to regurgitate into the left atrium, imposing a volume load on both the left atrium and the left ventricle. Symptoms: Dyspnoea (increased left atrial pressure); fatigue (decreased cardiac output). General signs: Tachypnoea. The pulse: Normal, or sharp upstroke due to rapid left ventricular decompression; atrial fibrillation is relatively common. Palpation: The apex beat may be displaced, diffuse and hyperdynamic if left ventricular enlargement has occurred; a pansystolic thrill may be present at the apex; a parasternal impulse (due to left atrial enlargement behind the right ventricle—the left atrium is often larger in mitral regurgitation than in mitral stenosis and can be enormous). All these signs suggest severe mitral regurgitation. Auscultation Soft or absent S1 (by the end of diastole, atrial and ventricular pressures have equalised and the valve cusps have drifted back together); left ventricular S3, due to rapid left ventricular filling in early diastole; pansystolic murmur maximal at the apex and usually radiating towards the axilla. Causes of chronic mitral regurgitation: (i) Degenerative; (ii) rheumatic; (iii) mitral valve prolapse; (iv) papillary muscle dysfunction, due to left ventricular failure or ischaemia.
THE BEST CARDIOLOGIST IN YELAHANKA Mitral regurgitation A regurgitant mitral valve allows part of the left ventricular stroke volume to regurgitate into the left atrium, imposing a volume load on both the left atrium and the left ventricle. Symptoms: Dyspnoea (increased left atrial pressure); fatigue (decreased cardiac output). General signs: Tachypnoea. The pulse: Normal, or sharp upstroke due to rapid left ventricular decompression; atrial fibrillation is relatively common. Palpation: The apex beat may be displaced, diffuse and hyperdynamic if left ventricular enlargement has occurred; a pansystolic thrill may be present at the apex; a parasternal impulse (due to left atrial enlargement behind the right ventricle—the left atrium is often larger in mitral regurgitation than in mitral stenosis and can be enormous). All these signs suggest severe mitral regurgitation. Auscultation Soft or absent S1 (by the end of diastole, atrial and ventricular pressures have equalised and the valve cusps have drifted back together); left ventricular S3, due to rapid left ventricular filling in early diastole; pansystolic murmur maximal at the apex and usually radiating towards the axilla. Causes of chronic mitral regurgitation: (i) Degenerative; (ii) rheumatic; (iii) mitral valve prolapse; (iv) papillary muscle dysfunction, due to left ventricular failure or ischaemia. Mitral valve prolapse (systolic-click murmur syndrome) This syndrome can cause a systolic murmur or click, or both, at the apex. The presence of the murmur indicates that there is some mitral regurgitation present. Auscultation: Systolic click or clicks at a variable time (usually mid-systolic) may be the only abnormality audible, but a click is not always audible; systolic
POPULAR CARDIOLOGIST IN KATTIGENAHALLI, BANGALORE Cyanotic congenital heart disease Some of the more common cyanotic lesions are discussed below. There are, however, a number of problems common to patients with cyanotic heart disease. 1 Erythrocytosis. Chronic cyanosis causes an increase in red cell numbers as a way of increasing oxygen carrying capacity. The platelet count is sometimes reduced and the white cell count normal. The increased blood viscosity associated with the high red cell mass causes a slight increase in the risk of stroke.37 Most patients have a stable elevated haemoglobin level, but venesection is recommended if this is greater than 20 g/dL and the haematocrit is greater than 65%. Levels as high as this can be associated with the hyperviscosity syndrome: headache, fatigue and difficulty concentrating. Recurrent venesection can cause iron depletion and the production of microcytic red cells, which are stiffer than normal cells and so increase viscosity further. 2 Bleeding. Reduced platelet numbers, abnormal platelet function and clotting factor deficiencies mean these patients have an increased risk of haemorrhage. The most dangerous problem is pulmonary haemorrhage but bleeding from the gums and menorrhagia are more common. The use of anticoagulation must be restricted to those with a strong indication for treatment. 3 Gallstones. Chronic cyanosis and increased haem turnover are associated with an increased incidence of pigment gallstones. 4 Renal dysfunction and gout. Congestion of the renal glomeruli is associated with a reduced glomerular filtration rate and proteinuria. This and the increased turnover of red cells lead to urate accumulation and gout. 5 Pulmonary hypertension. Lesions associated with increased flow through the pulmonary circulation (e.g. a large atrial septal defect) can lead to a reactive rise in pulmonary arterial resistance. This is more likely to occur if the left to right shunt is large. Eventually these pulmonary vascular changes become irreversible, pulmonary pressures equal or exceed systemic pressures, and central cyanosis occurs because the intra-cardiac shunt reverses (Eisenmenger’s syndrome). Flow is now from right to left. There is then no benefit in attempting to correct the underlying cardiac abnormality. Earlier and more successful treatment of children with congenital heart disease has reduced the number of patients with this inexorable disease. Careful management of these conditions can nevertheless improve patients’ symptoms and survival. Reasonable exercise tolerance is usually maintained into adult life for most patients but progressive deterioration then occurs. Haemorrhagic complications, especially haemoptysis, are common. Thrombotic stroke, cerebral abscess and pulmonary infarction can also occur.
1
false