http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 536 1
OK
background image not found
Found Update results for
'failure'
5
BEST CARDIOLOGY HOSPITALS IN BANGALORE Cardiac failure Cardiac failure is an increasingly common condition affecting about 1% of the population but much higher proportions of older people. It is responsible for an increasing number of hospital admissions. The various aetiologies have been discussed above, but the most common cause is now ischaemic heart disease rather than hypertensive heart disease. This reflects the improved modern management of hypertension in the population. The definition of heart failure has always included reference to the inability of the heart to meet the metabolic needs of the body. The earliest concepts of heart failure were of inadequate cardiac pump function and associated salt and water retention. Treatment was aimed at improving cardiac contractility and removing salt and water from the body. In the 1970s the concept of after-load reduction was introduced. This was based partly on the realisation that vasoconstriction was part of the problem. This has led to the modern neuro-hormonal concept of heart failure. It is clear that many of the features of cardiac failure are a result of stimulation of the renin-angiotensin-aldosterone system and sympathetic stimulation. These responses of the body to the fall in cardiac output temporarily increase cardiac performance and blood pressure by increasing vascular volumes, cardiac contractility and systemic resistance. In the medium and longer term these responses are maladaptive. They increase cardiac work and left ventricular volumes and lead to myocardial fibrosis with further loss of myocytes. Most recently it has become clear that heart failure is also an inflammatory condition, with evidence of cytokine activation. Work is underway to establish a role for treatment of this part of the condition. Current drug treatment has been successful in blocking many of the maladaptive aspects of neuro-hormonal stimulation. Many of these treatments have become established after benefits have been ascertained in large randomised controlled trials. These trials have also led to the abandoning of certain drugs (often those that increase cardiac performance) that were shown to have a detrimental effect on survival (e.g. Milrinone). The principles of treatment of heart failure are as follows: 1 Remove the exacerbating factors. 2 Relieve fluid retention. 3 Improve left ventricular function and reduce cardiac work; improve prognosis. 4 Protect against the adverse effects of drug treatment. 5 Assess for further management (e.g. revascularisation, transplant). 6 Manage complications (e.g. arrhythmias). 7 Protect high-risk patients from sudden death.
Indications for Hemodynamic Monitoring in Patients with STEMI Management of complicated acute myocardial infarction Hypovolemia versus cardiogenic shock Ventricular septal rupture versus acute mitral regurgitation Severe left ventricular failure Right ventricular failure Refractory ventricular tachycadia Differentiating severe pulmonary disease from left ventricular failure Assessment of cardiac tamponade Assessment of therapy in selected individuals Afterload reduction in patients with severe left ventricular failure Inotropic agent therapy Beta-blocker therapy Temporary pacing (ventricular versus atrioventricular) Intraaortic balloon counterpulsation Mechanical ventilation
This ordinarily consists of monitoring of  is suspected. heart rate and rhythm,  repeated measurement of systemic arterial pressure by cuff,  obtaining chest radiographs to detect heart failure,  repeated auscultation of the lung fields for pulmonary congestion,  measurement of urine flow,  examination of the skin and mucous membranes for evidence of the adequacy of perfusion, and
It may also improve arterial oxygenation by reducing pulmonary vascular congestion DIURETICS. Mild heart failure responds well to diuretics such as furosemide, Dose - 10 to 40 mg, repeated at 3- to 4-hour intervals if necessary. It reduces pulmonary capillary pressure reduces dyspnea. Decreased LVDV↓ LV wall tension - ↓ myocardial oxygen requirements and may lead to improvement of contractility and augmentation of the ejection fraction, stroke volume, and cardiac output. The reduction of elevated left ventricular filling pressure may also enhance myocardial oxygen delivery by diminishing the impedance to coronary perfusion attributable to elevated ventricular wall tension. .
Left Ventricular Failure Single most important predictor of mortality following STEMI in patients with STEMI Systolic dysfunction alone or both systolic and diastolic dysfunction can occur. LVDD leads to pulmonary venous hypertension and pulmonary congestion. Systolic dysfunction - ↓ cardiac output and of the ejection fraction. Predictors of LVF infarct size, advanced age and diabetes.[190] Mortality increases in association with the severity of the hemodynamic deficit.
1
false