http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 573 1
OK
background image not found
Found Update results for
'different types'
9
best cardiologists in bangalore Murmurs Murmurs are produced by turbulent blood flow, and are described according to their location, intensity, timing, frequency, and radiation (Tables 15.1 to 15.3 and Figure 15.1). Innocent murmurs are due to pulmonary flow and can be heard in children, pregnancy, and high-flow states, such as hyperthyroidism and anaemia. They are heard over the left sternal edge and are ejection systolic, and there are no added sounds or thrill. The cervical venous hum is a continuous murmur, common in children and typically reduced by turning the head laterally or bending the elbows back. The mammary soufflé is a continuous murmur that may be heard in pregnancy. Dynamic auscultation manoeuvres may help bedside diagnosis of systolic murmurs (Table 15.2). 4, 5 Murmurs originating within the right-sided chambers of the heart can be differentiated from all other murmurs by augmentation of their intensity with inspiration and diminution with expiration. The murmur of hypertrophic cardiomyopathy is distinguished from all other systolic murmurs by an increase in intensity with the Valsalva manoeuvre and during squatting-to-standing, and by a decrease in intensity during standing-to-squatting action, passive leg elevation, and handgrip. The murmurs of MR and VSD have similar responses but can be differentiated from other systolic murmurs by augmentation of their intensity with handgrip and during transient arterial occlusion.
Indications for Hemodynamic Monitoring in Patients with STEMI Management of complicated acute myocardial infarction Hypovolemia versus cardiogenic shock Ventricular septal rupture versus acute mitral regurgitation Severe left ventricular failure Right ventricular failure Refractory ventricular tachycadia Differentiating severe pulmonary disease from left ventricular failure Assessment of cardiac tamponade Assessment of therapy in selected individuals Afterload reduction in patients with severe left ventricular failure Inotropic agent therapy Beta-blocker therapy Temporary pacing (ventricular versus atrioventricular) Intraaortic balloon counterpulsation Mechanical ventilation
A risk factor is a demographic characteristic associated with an increased risk of ischaemic heart disease when other variables have been controlled. The presence of a risk factor in an individual increases his or her relative risk of a coronary event (angina, infarction or death). The absolute risk of a coronary event depends on the individual’s total number of risk factors and theirseverity (total risk). Important coronary risk factors are shown in Table 1.1. Risk assessment charts have been developed to estimate a patient’s cardiac risk over a number of years using easily identified risk factors. There are charts for different populations. The charts can be used to predict cardiovascular events or mortality (as in the NHF chart in Fig 1.1 on p. 4) or cardiac risk (systematic coronary risk evaluation system or SCORE charts). These charts can be very helpful in deciding when intervention to reduce risk is warranted; for example, when anti-hypertensive treatment should be commenced for a patient with mild blood pressure elevation. Risk factor reduction involves assessing the presence, severity and importance of risk factors for a
CARDIOLOGIST IN YELAHANKA SECOND DEGREE AV BLICK There are two basic types of second-degree AV block: AV nodal Möbitz type I (Wenckebach) heart block, and the more distal and more sinister Möbitz type II heart block. Möbitz type I heart block is much more common. In Möbitz type I block the PR interval lengthens progressively with each cardiac cycle, until an atrial wave is not conducted. There is recovery of conduction and the next a wave is conducted with a shorter interval and the cycle begins again. The QRS complex is narrow (Fig 3.10) (unless associated with pre-existing BBB). The increment is largest between the first and second conducted P wave, and the PR interval continues to increase by less and less until a P wave is dropped. Möbitz type II heart block is almost always associated with a BBB (Fig 3.11), since its origin is intraventricular (below the AV node), and it tends to lapse suddenly into extreme bradycardia or asystole. It tends to be over-diagnosed, especially in the setting of 2:1 AV block (Fig 3.12). There is no lengthening of the PR interval before an atrial wave is not conducted. At times, atropine or exercise can demonstrate the site of the block, by increasing the block from 2:1 to a higher grade when the underlying mechanism is Möbitz II. Conversely, Wenckebach conduction may improve to 3:2 or better. For a distinction to be made between Möbitz type I and Möbitz type II, at least two consecutively conducted P waves have to be evaluated. This is impossible in 2:1 conduction (block) and can only be reported as 2:1 AV block (Fig 3.12). Yet this is very commonly reported as
POPULAR CARDIOLOGISTS IN SAHAKARANAGAR Left ventricular hypertrophy Although the ECG is reasonably specific, it is not as sensitive as echocardiography in detecting LVH. The LVH voltage alone may be a normal finding in younger subjects, but in adults over 35 years it usually connotes true LVH, especially if corroboratory findings are present Unfortunately, LVH with ST/T changes may be impossible to separate from LVH voltage complicated by ST/T changes of different, especially ischaemic, origin . Right ventricular hypertrophy The main criteria fSAor detecting RVH are RAD over +110° and a dominant R wave in V1 (in the absence of its other causes and in the presence of normal-duration QRS) In congenital heart disease conduction defects often come to obscure the hypertrophy patterns.
THE BEST CARDIOLOGISTS IN YELAHANKA Second-degree AV block There are two basic types of second-degree AV block: AV nodal Möbitz type I heart block, and the more distal and more sinister Möbitz type II heart block. Möbitz type I heart block is much more common. In Möbitz type I block the PR interval lengthens progressively with each cardiac cycle, until an atrial wave is not conducted. There is recovery of conduction and the next a wave is conducted with a shorter interval and the cycle begins again. The QRS complex is narrow (unless associated with pre-existing BBB). The increment is largest between the first and second conducted P wave, and the PR interval continues to increase by less and less until a P wave is dropped. Möbitz type II heart block is almost always associated with a BBB , since its origin is intraventricular (below the AV node), and it tends to lapse suddenly into extreme bradycardia or asystole. It tends to be over-diagnosed, especially in the setting of 2:1 AV block . There is no lengthening of the PR interval before an atrial wave is not conducted. At times, atropine or exercise can demonstrate the site of the block, by increasing the block from 2:1 to a higher grade when the underlying mechanism is Möbitz II. Conversely, Wenckebach conduction may improve to 3:2 or better. For a distinction to be made between Möbitz type I and Möbitz type II, at least two consecutively conducted P waves have to be evaluated. This is impossible in 2:1 conduction (block) and can only be reported as 2:1 AV block (Fig 3.12). Yet this is very commonly reported as Möbitz type
POPULAR CARDIOLOGISTS IN SAHAKARANAGAR Cardiomyopathies and valvular heart disease Regardless of the status of the coronary arterial tree, both primary and secondary heart muscle disease can produce anginal pain through the imbalance of the oxygen demand and supply. Hypertrophic cardiomyopathy is a relatively common cause of angina in the presence of normal coronary arteries. Aortic stenosis is the most common valvular cause of exertional chest tightness, which is probably due to myocardial ischaemia Exertional chest pain, which may be due to right ventricular angina, is a feature of pulmonary hypertension . Syndrome X There is some confusion regarding the ‘metabolic’ and ‘cardiac’ varieties. The former is a combination of insulin resistance, obesity, pro-inflammatory state and so on, leading to raised cardiovascular risk in the sufferers. The latter is, or should be, a form of stable effort angina that can be ascribed to coronary microvascular malfunction.23 The epicardial coronary tree is normal and the diagnosis is rather difficult to make except by exclusion. Acute coronary syndromes The terminology used to describe acute coronary syndromes (ACSs) continues to evolve as clinicians attempt to adjust to the accumulating evidence of the usefulness of modern cardiac markers and the treatment implications of different results. The most recent terminology is designed to help with treatment decisions based on the earliest clinical information from the patient. This comes from the history and the ECG. When the patient’s symptoms suggest an acute coronary syndrome, the first decisions about diagnosis and treatment are based on the ECG. If there is ST elevation present in a pattern to suggest myocardial infarction, the diagnosis is of ‘ST elevation myocardial infarction’ (STEMI). If there is no ST elevation, the initial diagnosis is of ‘non-ST elevation acute coronary syndrome’ (NSTEACS).24 This elegant phrase has replaced ‘non-ST elevation myocardial infarction’ (non- STEMI). The reason is that the diagnosis of infarction cannot be made in the absence of ST elevation until cardiac marker estimations are available. The decisions about treatment, however, need to be made immediately and are based on symptoms and ECG changes.
HEART DOCTORS IN YELAHANKA NEWTOWN, BANGALORE Management of ACS (NSTEACS) Patients with this diagnosis represent a rather heterogeneous group. Some have had the recent onset of angina at the extremes of exercise, others have angina at rest associated with ECG changes. This variation has made attempts to study the effects of different treatment rather difficult. Although the majority of patients with myocardial infarction have a preceding period of unstable angina, only about 5% of all patients admitted to hospital with a diagnosis of an ACS go on to infarct during that admission. The in-hospital mortality for these patients is low. Mortality rates of less than 2% are usual. Nevertheless, there is a real short-term and longerterm risk of infarction, recurrent admission with unstable symptoms and death which is higher than that of patients with stable angina. The diagnosis should therefore lead to admission to a CCU. The cardiac enzymes are, by definition, not elevated in these patients but the newer, more sensitive tests for troponin T and troponin I may be abnormal and indicate a worse prognosis . In the CCU, bed rest, oxygen and ECG monitoring are routinely enforced and any mobile phones taken away (allegedly to protect the monitoring equipment). Recurrence of chest pain can be assessed quickly and ECGs performed to look for changes suggesting infarction. The cardiac biomarkers can be checked regularly. All patients should receive aspirin (300 mg) unless there is a contraindication. Patients with an intermediate or a higher risk should also be given clopidogrel (usually a 300–600 mg loading dose). The use of intravenous heparin has become standard treatment. A typical starting dose is 5000 units as a bolus followed by 24, 000 units over 24 hours. The activated partial thromboplastin time (APPT) should be measured after about six hours of treatment and the infusion rate of heparin adjusted to maintain this at about twice normal. Heparin is generally safe when used in this way. Bleeding problems may sometimes occur and the platelet count should be checked every few days so that heparin-induced thrombocytopenia (HITS), a rare but serious complication, can be detected early. Low molecular weight heparins are at least as effective as unfractionated heparin. These drugs have some advantages over heparin. Their dose response effect is more predictable and they cause less thrombocytopenia. They are effective given subcutaneously without APPT monitoring and are now cheaper than IV heparin when savings on APPT monitoring and the use of infusion sets are considered. A standard twice-daily dose is given according to the patient’s weight—1 mg/kg for enoxaparin (Clexane). The dose is reduced by half for those with moderate or severe renal impairment and for those over the age of 75. Additional treatment should include beta-blockers unless these are contraindicated. These drugs reduce the number of ischaemic episodes and probably the risk of myocardial infarction. Nitrates can be a useful adjunctive treatment. They may be given orally, topically or intravenously. The IV dose can be titrated up or down depending on the amount of pain the patient is experiencing and the severity of side effects such as hypotension and headache. The problem of tachyphylaxis with nitrates can be overcome by steady increases in the IV dose if necessary. Calcium antagonists are appropriate treatment for patients intolerant of beta-blockers and may sometimes be added to beta-blockers. Nifedipine, especially in its short-acting form, should not be used for patients with acute coronary syndromes unless they are already taking beta-blockers. Thrombolytic drugs have been disappointing when used for NSTEACS. In trials where they have been used for patients with ischaemic chest pain but without ST elevation there has been a trend towards an adverse outcome. This may be related to the rebound hypercoagulable state that can occur after their use. In general they should not be used for the treatment of NSTEACS. Glycoprotein IIb/IIIa inhibitors (p. 198) should be given for high-risk patients,
Types of Diabetes Learn about Diabetes You can learn how to take care of your diabetes and prevent some of the serious problems diabetes can cause. The more you know, the better you can manage your diabetes... Share this booklet with your family and friends so they will understand more about diabetes. Also make sure to ask your health care team any questions you might have.''
1
false