http://WWW.HEARTDIABETESCARE.COM
SAMIKSHAHEARTCARE 57698d5b9ec66b0b6cfb5b6b False 536 1
OK
background image not found
Found Update results for
'anterograde conduction'
5
CARDIOLOGIST IN YELAHANKA SECOND DEGREE AV BLICK There are two basic types of second-degree AV block: AV nodal Möbitz type I (Wenckebach) heart block, and the more distal and more sinister Möbitz type II heart block. Möbitz type I heart block is much more common. In Möbitz type I block the PR interval lengthens progressively with each cardiac cycle, until an atrial wave is not conducted. There is recovery of conduction and the next a wave is conducted with a shorter interval and the cycle begins again. The QRS complex is narrow (Fig 3.10) (unless associated with pre-existing BBB). The increment is largest between the first and second conducted P wave, and the PR interval continues to increase by less and less until a P wave is dropped. Möbitz type II heart block is almost always associated with a BBB (Fig 3.11), since its origin is intraventricular (below the AV node), and it tends to lapse suddenly into extreme bradycardia or asystole. It tends to be over-diagnosed, especially in the setting of 2:1 AV block (Fig 3.12). There is no lengthening of the PR interval before an atrial wave is not conducted. At times, atropine or exercise can demonstrate the site of the block, by increasing the block from 2:1 to a higher grade when the underlying mechanism is Möbitz II. Conversely, Wenckebach conduction may improve to 3:2 or better. For a distinction to be made between Möbitz type I and Möbitz type II, at least two consecutively conducted P waves have to be evaluated. This is impossible in 2:1 conduction (block) and can only be reported as 2:1 AV block (Fig 3.12). Yet this is very commonly reported as
THE BEST CARDIOLOGISTS IN YELAHANKA Second-degree AV block There are two basic types of second-degree AV block: AV nodal Möbitz type I heart block, and the more distal and more sinister Möbitz type II heart block. Möbitz type I heart block is much more common. In Möbitz type I block the PR interval lengthens progressively with each cardiac cycle, until an atrial wave is not conducted. There is recovery of conduction and the next a wave is conducted with a shorter interval and the cycle begins again. The QRS complex is narrow (unless associated with pre-existing BBB). The increment is largest between the first and second conducted P wave, and the PR interval continues to increase by less and less until a P wave is dropped. Möbitz type II heart block is almost always associated with a BBB , since its origin is intraventricular (below the AV node), and it tends to lapse suddenly into extreme bradycardia or asystole. It tends to be over-diagnosed, especially in the setting of 2:1 AV block . There is no lengthening of the PR interval before an atrial wave is not conducted. At times, atropine or exercise can demonstrate the site of the block, by increasing the block from 2:1 to a higher grade when the underlying mechanism is Möbitz II. Conversely, Wenckebach conduction may improve to 3:2 or better. For a distinction to be made between Möbitz type I and Möbitz type II, at least two consecutively conducted P waves have to be evaluated. This is impossible in 2:1 conduction (block) and can only be reported as 2:1 AV block (Fig 3.12). Yet this is very commonly reported as Möbitz type
POPULAR CARDIOLOGISTS IN H S R LAYOUT Ventricular tachycardia Ventricular tachycardia is defined as three or more ventricular ectopic beats at a rate over 100/minute. It is said to be sustained if it lasts more than 30 seconds. Most broad-complex tachycardias are ventricular (rather than supraventricular with aberrant conduction). The diagnosis of VT is greatly strengthened if there is a history of myocardial infarction or cardiac failure but, oddly enough, the patient’s haemodynamics are of no help. A number of criteria have evolved over the years to help ascertain the diagnosis of VT over aberrancy. These include: evidence of AV dissociation—P waves can be seen unrelated to the QRS complexes (they are usually visible only at relatively slow VT rates) the presence of supraventricular capture or fusion beats visible retrograde conduction with 2:1 block (P waves visible following every second complex) the presence of monophasic R, qR or QR patterns in V1, provided a septal infarction has not modified a RBBB a taller left rabbit ear in RR' or qRR' complexes in V1 n QS complexes in V1 with a slow S descent and sharp upstroke—the opposite of LBBB—or a broad small primary R wave in rS morphology (the Rosenbaum pattern) RAD in the frontal plane with LBBB-like QRS complexes
THE BEST HEART SPECIALIST S IN YELAHANKA ST segment There are two aspects to report: depression and elevation. Depression The ST segment is said to be abnormal if it slopes down 1 mm or more from the J point—the end of the QRS complex (downsloping depression)—or is depressed 1 mm or more horizontally (plane depression). Depression of the J point itself may be normal, especially during exercise, but this upsloping ST depression should return to the isoelectric line within 0.08 seconds. The isoelectric line is defined as the PR or TP segment of the ECG . ST depression may be due to ischaemia, the effect of digoxin, hypertrophy and so on. Elevation ST elevation of up to 3 mm may be normal in V leads (especially the right), and up to 1 mm may be normal in limb leads. This ST elevation is called early repolarisation syndrome or pattern. Otherwise ST elevation may mean an acute myocardial infarction where it is said to represent a current of injury. Pericarditis also causes ST elevation but unlike infarction is usually associated with concave upwards elevation. hypertrophy and conduction defects like LBBB can be associated with ST elevation in leads where the QRS is mostly negative. T waves The T wave is always inverted in lead aVR and often in L3 and V1–V2, and in aVL if the R wave is less than 5 mm tall. Inversion and flattening are common and non-specific findings. Deep (> 5 mm) symmetrical and persistent (days to weeks) inversion is consistent with infarction; broad, ‘giant’ inversion may follow syncope from any cause including cerebrovascular accidents. Like the ST segment, the T wave tends to be directed opposite to the main QRS deflection in conduction defects (e.g. LBBB), VEBs or ventricular hypertrophy (where it is described as secondary ST/T changes or strain pattern). Tall peaked T waves are most often seen as a reciprocal change to inferior or posterior infarcts. They are classically seen in patients with hyperkalaemia. Broader large T waves are seen in early (‘hyperacute’) infarction and sometimes in cerebrovascular accidents. While not diagnostic by themselves (T waves never are), when they are associated with modest ST elevation (especially in V3) and reciprocal depression in the inferior leads, they indicate infarction or ischaemia. When these changes evolve over time they are even more specific for infarction A U wave may be prominent in patients with hypokalaemia, LVH and bradycardia. Isolated
CARDIAC CENTERS IN YELAHANKA NEW TOWN BANGALORE ST segment There are two aspects to report: depression and elevation. Depression The ST segment is said to be abnormal if it slopes down 1 mm or more from the J point—the end of the QRS complex (downsloping depression)—or is depressed 1 mm or more horizontally (plane depression). Depression of the J point itself may be normal, especially during exercise, but this upsloping ST depression should return to the isoelectric line within 0.08 seconds. The isoelectric line is defined as the PR or TP segment of the ECG . ST depression may be due to ischaemia, the effect of digoxin, hypertrophy and so on. Elevation ST elevation of up to 3 mm may be normal in V leads (especially the right), and up to 1 mm may be normal in limb leads. This ST elevation is called early repolarisation syndrome or pattern. Otherwise ST elevation may mean an acute myocardial infarction where it is said to represent a current of injury. Pericarditis also causes ST elevation but unlike infarction is usually associated with concave upwards elevation. hypertrophy and conduction defects like LBBB can be associated with ST elevation in leads where the QRS is mostly negative. T waves The T wave is always inverted in lead aVR and often in L3 and V1–V2, and in aVL if the R wave is less than 5 mm tall. Inversion and flattening are common and non-specific findings. Deep (> 5 mm) symmetrical and persistent (days to weeks) inversion is consistent with infarction; broad, ‘giant’ inversion may follow syncope from any cause including cerebrovascular accidents. Like the ST segment, the T wave tends to be directed opposite to the main QRS deflection in conduction defects (e.g. LBBB), VEBs or ventricular hypertrophy (where it is described as secondary ST/T changes or strain pattern). Tall peaked T waves are most often seen as a reciprocal change to inferior or posterior infarcts. They are classically seen in patients with hyperkalaemia. Broader large T waves are seen in early (‘hyperacute’) infarction and sometimes in cerebrovascular accidents. While not diagnostic by themselves (T waves never are), when they are associated with modest ST elevation (especially in V3) and reciprocal depression in the inferior leads, they indicate infarction or ischaemia. When these changes evolve over time they are even more specific for infarction . A U wave may be prominent in patients with hypokalaemia, LVH and bradycardia. Isolated U inversion is a specific but insensitive sign of coronary disease. 54 PRACTICAL CARDIOLOGY ECG reports Reports should be short and stereotyped, with the description clearly separated from the comment. It is a good general strategy to under-report, especially for a beginner. It is generally wiser to state ‘inferior Q waves noted’ or ‘non-specific ST/T changes’ than to indulge in speculation on possible or probable infarction or ischaemia. ECG labels tend to have serious employment and insurance implications. On the other hand, specific questions on the request form must be addressed, since they constitute the reason for taking the ECG in the first place.
1
false